Progress in evaluating the status of hepatitis C infection based on the functional changes of hepatic stellate cells (Review)
- Authors:
- Wei Wang
- Xuelian Huang
- Xuzhou Fan
- Jingmei Yan
- Jianfeng Luan
-
Affiliations: Department of Blood Transfusion Medicine, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, Jiangsu 210002, P.R. China - Published online on: September 17, 2020 https://doi.org/10.3892/mmr.2020.11516
- Pages: 4116-4124
This article is mentioned in:
Abstract
Wiktor S: How feasible is the global elimination of HCV infection. Lancet. 393:1265–1267. 2019. View Article : Google Scholar : PubMed/NCBI | |
Spearman CW, Dusheiko GM, Hellard M and Sonderup M: Hepatitis C. Lancet. 394:1451–1466. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Zhao L, Geng N, Zhu W, Liu H and Bai H: Prevalence and characteristics of hepatitis C virus infection in Shenyang City, Northeast China, and prediction of HCV RNA positivity according to serum anti-HCV level: Retrospective review of hospital data. Virol J. 17:362020. View Article : Google Scholar : PubMed/NCBI | |
Lee MH, Yang HI, Yuan Y, L'Italien G and Chen CJ: Epidemiology and natural history of hepatitis C virus infection. World J Gastroenterol. 20:9270–9280. 2014.PubMed/NCBI | |
Martinello M, Hajarizadeh B, Grebely J, Dore GJ and Matthews GV: Management of acute HCV infection in the era of direct-acting antiviral therapy. Nat Rev Gastroenterol Hepatol. 15:412–424. 2018. View Article : Google Scholar : PubMed/NCBI | |
Toyoda H, Kumada T, Tada T, Mizuno K, Sone Y, Akita T, Tanaka J and Johnson PJ: The impact of HCV eradication by direct-acting antivirals on the transition of precancerous hepatic nodules to HCC: A prospective observational study. Liver Int. 39:448–454. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shiffman ML and Benhamou Y: Cure of HCV related liver disease. Liver Int. 35 (Suppl 1):S71–S77. 2015. View Article : Google Scholar | |
Owusu Sekyere S, Schlevogt B, Mettke F, Kabbani M, Deterding K, Wirth TC, Vogel A, Manns MP, Falk CS, Cornberg M and Wedemeyer H: HCC immune surveillance and antiviral therapy of hepatitis C virus infection. Liver Cancer. 8:41–65. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lin MV, King LY and Chung RT: Hepatitis C virus-associated cancer. Annu Rev Pathol. 10:345–370. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Li J, Wang X, Sang M and Ho W: Hepatic stellate cells, liver innate immunity, and hepatitis C virus. J Gastroenterol Hepatol. 28 (Suppl 1):S112–S115. 2013. View Article : Google Scholar | |
Kocabayoglu P, Lade A, Lee YA, Dragomir AC, Sun X, Fiel MI, Thung S, Aloman C, Soriano P, Hoshida Y and Friedman SL: β-PDGF receptor expressed by hepatic stellate cells regulates fibrosis in murine liver injury, but not carcinogenesis. J Hepatol. 63:141–147. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cheng JC, Tseng CP, Liao MH, Peng CY, Yu JS, Chuang PH, Huang JT and Chen JJW: Activation of hepatic stellate cells by the ubiquitin C-terminal hydrolase 1 protein secreted from hepatitis C virus-infected hepatocytes. Sci Rep. 7:44482017. View Article : Google Scholar : PubMed/NCBI | |
Gieseler RK, Marquitan G, Schlattjan M, Sowa JP, Bechmann LP, Timm J, Roggendorf M, Gerken G, Friedman SL and Canbay A: Hepatocyte apoptotic bodies encasing nonstructural HCV proteins amplify hepatic stellate cell activation: Implications for chronic hepatitis C. J Viral Hepat. 18:760–767. 2011. View Article : Google Scholar : PubMed/NCBI | |
Saeed A, Baloch K, Brown RJ, Wallis R, Chen L, Dexter L, McClure CP, Shakesheff K and Thomson BJ: Mannan binding lectin-associated serine protease 1 is induced by hepatitis C virus infection and activates human hepatic stellate cells. Clin Exp Immunol. 174:265–273. 2013.PubMed/NCBI | |
El-Ahwany E, Nagy F, Zoheiry M, Shemis M, Nosseir M, Taleb HA, El Ghannam M, Atta R and Zada S: Circulating miRNAs as predictor markers for activation of hepatic stellate cells and progression of HCV-induced liver fibrosis. Electron Physician. 8:1804–1810. 2016. View Article : Google Scholar : PubMed/NCBI | |
Munsterman ID, Kendall TJ, Khelil N, Popa M, Lomme R, Drenth JPH and Tjwa ETTL: Extracellular matrix components indicate remodelling activity in different fibrosis stages of human non-alcoholic fatty liver disease. Histopathology. 73:612–621. 2018. View Article : Google Scholar : PubMed/NCBI | |
Warkad SD, Nimse SB, Song KS and Kim T: HCV detection, discrimination and genotyping technologies. Sensors (Basel). 18:34232018. View Article : Google Scholar | |
Vanhommerig JW, van de Laar TJ, Koot M, van Rooijen MS, Schinkel J, Speksnijder AG, Prins M, de Vries HJ and Bruisten SM: Evaluation of a hepatitis C virus (HCV) antigen assay for routine HCV screening among men who have sex with men infected with HIV. J Virol Methods. 213:147–150. 2015. View Article : Google Scholar : PubMed/NCBI | |
Laperche S, Le Marrec N, Girault A, Bouchardeau F, Servant-Delmas A, Maniez-Montreuil M, Gallian P, Levayer T, Morel P and Simon N: Simultaneous detection of hepatitis C virus (HCV) core antigen and anti-HCV antibodies improves the early detection of HCV infection. J Clin Microbiol. 43:3877–3883. 2005. View Article : Google Scholar : PubMed/NCBI | |
Mazzola G, Adamoli L, Calvaruso V, Macaluso FS, Colletti P, Mazzola S, Cervo A, Trizzino M, Di Lorenzo F, Iaria C, et al: Suboptimal performance of APRI and FIB-4 in ruling out significant fibrosis and confirming cirrhosis in HIV/HCV co-infected and HCV mono-infected patients. Infection. 47:409–415. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sakiani S, Koh C and Heller T: Understanding the presence of false-positive antibodies in acute hepatitis. J Infect Dis. 210:1886–1889. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chida T, Ito M, Nakashima K, Kanegae Y, Aoshima T, Takabayashi S, Kawata K, Nakagawa Y, Yamamoto M, Shimano H, et al: Critical role of CREBH-mediated induction of transforming growth factor β 2 by hepatitis C virus infection in fibrogenic responses in hepatic stellate cells. Hepatology. 66:1430–1443. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wake K: ‘Sternzellen’ in the liver: Perisinuosoidal cells with special reference to storage of vitamin A. Am J Anat. 132:429–462. 1971. View Article : Google Scholar : PubMed/NCBI | |
No authors listed, . Hepatic stellate cell nomenclature. Hepatology. 23:1931996.PubMed/NCBI | |
Zhao W, Zhang L, Yin Z, Su W, Ren G, Zhou C, You J, Fan J and Wang X: Activated hepatic stellate cells promote hepatocellular carcinoma development in immunocompetent mice. Int J Cancer. 129:2651–2661. 2011. View Article : Google Scholar : PubMed/NCBI | |
Higashi T, Friedman SL and Hoshida Y: Hepatic stellate cells as key target in liver fibrosis. Adv Drug Deliv Rev. 121:27–42. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhao W, Zhang L, Xu Y, Zhang Z, Ren G, Tang K, Kuang P, Zhao B, Yin Z and Wang X: Hepatic stellate cells promote tumor progression by enhancement of immunosuppressive cells in an orthotopic liver tumor mouse model. Lab Invest. 94:182–191. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhou CL, Kong DL, Liu JF, Lu ZK, Guo HF, Wang W, Qiu JF, Liu XJ and Wang Y: MHC II−, but not MHC II+, hepatic stellate cells contribute to liver fibrosis of mice in infection with schistosoma japonicum. Biochim Biophys Acta Mol Basis Dis. 1863:1848–1857. 2017. View Article : Google Scholar : PubMed/NCBI | |
Najar M, Fayyad-Kazan H, Faour WH, El Taghdouini A, Raicevic G, van Grunsven LA, Najimi M, Sokal E and Lagneaux L: Immuno-biological comparison of hepatic stellate cells in a reverted and activated state. Biomed Pharmacother. 98:52–62. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bansal MB: Hepatic stellate cells: Fibrogenic, regenerative or both? Heterogeneity and context are key. Hepatol Int. 10:902–908. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lee UE and Friedman SL: Mechanisms of hepatic fibrogenesis. Best Pract Res Clin Gastroenterol. 25:195–206. 2011. View Article : Google Scholar : PubMed/NCBI | |
Li H, Lan J, Han C, Guo K, Wang G, Hu J, Gong J, Luo X and Cao Z: Brg1 promotes liver fibrosis via activation of hepatic stellate cells. Exp Cell Res. 364:191–197. 2018. View Article : Google Scholar : PubMed/NCBI | |
Senoo H, Mezaki Y and Fujiwara M: The stellate cell system (vitamin A-storing cell system). Anat Sci Int. 92:387–455. 2017. View Article : Google Scholar : PubMed/NCBI | |
Senoo H, Kojima N and Sato M: Vitamin A-storing cells (stellate cells). Vitam Horm. 75:131–159. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bi Y, Mukhopadhyay D, Drinane M, Ji B, Li X, Cao S and Shah VH: Endocytosis of collagen by hepatic stellate cells regulates extracellular matrix dynamics. Am J Physiol Cell Physiol. 307:C622–C633. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Ou Y, Dong J, Yang G, Zeng Z, Liu Y, Liu B, Li W, He X and Lan T: Osteopontin promotes collagen I synthesis in hepatic stellate cells by miRNA-129-5p inhibition. Exp Cell Res. 362:343–348. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Yang S, Huang J, Chen S, Li Y and Li Q: Activation of corticotropin releasing factor receptors up regulates collagen production by hepatic stellate cells via promoting p300 expression. Biol Chem. 397:437–444. 2016. View Article : Google Scholar : PubMed/NCBI | |
Testino G, Leone S, Fagoonee S and Pellicano R: Alcoholic liver fibrosis: Detection and treatment. Minerva Med. 109:457–471. 2018. View Article : Google Scholar : PubMed/NCBI | |
Malagnino V, Bottero J, Miailhes P, Lascoux-Combe C, Girard PM, Zoulim F, Lacombe K and Boyd A: Hepatitis B virus genotype G and liver fibrosis progression in chronic hepatitis B and human immunodeficiency virus coinfection. J Med Virol. 91:630–641. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chung SI, Moon H, Ju HL, Cho KJ, Kim DY, Han KH, Eun JW, Nam SW, Ribback S, Dombrowski F, et al: Hepatic expression of sonic hedgehog induces liver fibrosis and promotes hepatocarcinogenesis in a transgenic mouse model. J Hepatol. 64:618–627. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tsuchida T and Friedman SL: Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol. 14:397–411. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pradere JP, Kluwe J, De Minicis S, Jiao JJ, Gwak GY, Dapito DH, Jang MK, Guenther ND, Mederacke I, Friedman R, et al: Hepatic macrophages but not dendritic cells contribute to liver fibrosis by promoting the survival of activated hepatic stellate cells in mice. Hepatology. 58:1461–1473. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jin H, Jia Y, Yao Z, Huang J, Hao M, Yao S, Lian N, Zhang F, Zhang C, Chen X, et al: Hepatic stellate cell interferes with NK cell regulation of fibrogenesis via curcumin induced senescence of hepatic stellate cell. Cell Signal. 33:79–85. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li X, Su Y, Hua X, Xie C, Liu J, Huang Y, Zhou L, Zhang M, Li X and Gao Z: Levels of hepatic Th17 cells and regulatory T cells upregulated by hepatic stellate cells in advanced HBV-related liver fibrosis. J Transl Med. 15:752017. View Article : Google Scholar : PubMed/NCBI | |
Corpechot C, Barbu V, Wendum D, Kinnman N, Rey C, Poupon R, Housset C and Rosmorduc O: Hypoxia-induced VEGF and collagen I expressions are associated with angiogenesis and fibrogenesis in experimental cirrhosis. Hepatology. 35:1010–1021. 2002. View Article : Google Scholar : PubMed/NCBI | |
Hong IH, Park SJ, Goo MJ, Lee HR, Park JK, Ki MR, Kim SH, Lee EM, Kim AY and Jeong KS: JNK1 and JNK2 regulate α-SMA in hepatic stellate cells during CCl4-induced fibrosis in the rat liver. Pathol Int. 63:483–491. 2013. View Article : Google Scholar : PubMed/NCBI | |
Giannandrea M and Parks WC: Diverse functions of matrix metalloproteinases during fibrosis. Dis Model Mech. 7:193–203. 2014. View Article : Google Scholar : PubMed/NCBI | |
Holm Nielsen S, Willumsen N, Leeming DJ, Daniels SJ, Brix S, Karsdal MA, Genovese F and Nielsen MJ: Serological assessment of activated fibroblasts by alpha-smooth muscle actin (α-SMA): A noninvasive biomarker of activated fibroblasts in lung disorders. Transl Oncol. 12:368–374. 2019. View Article : Google Scholar : PubMed/NCBI | |
Elzamly S, Agina HA, Elbalshy AE, Abuhashim M, Saad E and Abd Elmageed ZY: Integration of VEGF and α-SMA expression improves the prediction accuracy of fibrosis in chronic hepatitis C liver biopsy. Appl Immunohistochem Mol Morphol. 25:261–270. 2017. View Article : Google Scholar : PubMed/NCBI | |
Stefanovic L and Stefanovic B: Role of cytokine receptor-like factor 1 in hepatic stellate cells and fibrosis. World J Hepatol. 4:356–364. 2012. View Article : Google Scholar : PubMed/NCBI | |
Latoche JD, Ufelle AC, Fazzi F, Ganguly K, Leikauf GD and Fattman CL: Secreted phosphoprotein 1 and sex-specific differences in silica-induced pulmonary fibrosis in mice. Environ Health Perspect. 124:1199–1207. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kumar P, Smith T, Raeman R, Chopyk DM, Brink H, Liu Y, Sulchek T and Anania FA: Periostin promotes liver fibrogenesis by activating lysyl oxidase in hepatic stellate cells. J Biol Chem. 293:12781–12792. 2018. View Article : Google Scholar : PubMed/NCBI | |
Dongiovanni P, Meroni M, Baselli GA, Bassani GA, Rametta R, Pietrelli A, Maggioni M, Facciotti F, Trunzo V, Badiali S, et al: Insulin resistance promotes lysyl oxidase like 2 induction and fibrosis accumulation in non-alcoholic fatty liver disease. Clin Sci (Lond). 131:1301–1315. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang SC, Zheng YH, Yu PP, Min TH, Yu FX, Ye C, Xie YK and Zhang QY: Lentiviral vector-mediated down-regulation of IL-17A receptor in hepatic stellate cells results in decreased secretion of IL-6. World J Gastroenterol. 18:3696–3704. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ehling J and Tacke F: Role of chemokine pathways in hepatobiliary cancer. Cancer Lett. 379:173–183. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kim BM, Abdelfattah AM, Vasan R, Fuchs BC and Choi MY: Hepatic stellate cells secrete Ccl5 to induce hepatocyte steatosis. Sci Rep. 8:74992018. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Zhang Q, Zhang Q, Xu M, Qu Y, Cai X and Lu L: CXCL6 promotes human hepatocyte proliferation through the CXCR1-NFkB pathway and inhibits collagen I secretion by hepatic stellate cells. Biochem Cell Biol. 94:229–235. 2016. View Article : Google Scholar : PubMed/NCBI | |
Puche JE, Saiman Y and Friedman SL: Hepatic stellate cells and liver fibrosis. Compr Physiol. 3:1473–1492. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ma PF, Gao CC, Yi J, Zhao JL, Liang SQ, Zhao Y, Ye YC, Bai J, Zheng QJ, Dou KF, et al: Cytotherapy with M1-polarized macrophages ameliorates liver fibrosis by modulating immune microenvironment in mice. J Hepatol. 67:770–779. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sasaki R, Devhare PB, Steele R, Ray R and Ray RB: Hepatitis C virus-induced CCL5 secretion from macrophages activates hepatic stellate cells. Hepatology. 66:746–757. 2017. View Article : Google Scholar : PubMed/NCBI | |
Höchst B, Schildberg FA, Sauerborn P, Gäbel YA, Gevensleben H, Goltz D, Heukamp LC, Türler A, Ballmaier M, Gieseke F, et al: Activated human hepatic stellate cells induce myeloid derived suppressor cells from peripheral blood monocytes in a CD44-dependent fashion. J Hepatol. 59:528–535. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang B, Trippler M, Pei R, Lu M, Broering R, Gerken G and Schlaak JF: Toll-like receptor activated human and murine hepatic stellate cells are potent regulators of hepatitis C virus replication. J Hepatol. 51:1037–1045. 2009. View Article : Google Scholar : PubMed/NCBI | |
Jeong WI, Park O, Suh YG, Byun JS, Park SY, Choi E, Kim JK, Ko H, Wang H, Miller AM and Gao B: Suppression of innate immunity (natural killer cell/interferon-γ) in the advanced stages of liver fibrosis in mice. Hepatology. 53:1342–1351. 2011. View Article : Google Scholar : PubMed/NCBI | |
Radaeva S, Wang L, Radaev S, Jeong WI, Park O and Gao B: Retinoic acid signaling sensitizes hepatic stellate cells to NK cell killing via upregulation of NK cell activating ligand RAE1. Am J Physiol Gastrointest Liver Physiol. 293:G809–G816. 2007. View Article : Google Scholar : PubMed/NCBI | |
Langhans B, Alwan AW, Krämer B, Glässner A, Lutz P, Strassburg CP, Nattermann J and Spengler U: Regulatory CD4+T cells modulate the interaction between NK cells and hepatic stellate cells by acting on either cell type. J Hepatol. 62:398–404. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Lu L, Qian S, Fung JJ and Lin F: Hepatic stellate cells directly inhibit B cells via programmed death-ligand 1. J Immunol. 196:1617–1625. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bedossa P and Paradis V: Approaches for treatment of liver fibrosis in chronic hepatitis C. Clin Liver Dis. 7:195–210. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ignat SR, Dinescu S, Hermenean A and Costache M: Cellular interplay as a consequence of inflammatory signals leading to liver fibrosis development. Cells. 9:4612020. View Article : Google Scholar | |
Shahin K, Hosseini SY, Jamali H, Karimi MH, Azarpira N and Zeraatian M: The enhancing impact of amino termini of hepatitis C virus core protein on activation of hepatic stellate cells. Gastroenterol Hepatol Bed Bench. 13:57–63. 2020.PubMed/NCBI | |
Wang L, Wang Y and Quan J: Exosomes derived from natural killer cells inhibit hepatic stellate cell activation and liver fibrosis. Hum Cell. 33:582–589. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cai B, Dongiovanni P, Corey KE, Wang X, Shmarakov IO, Zheng Z, Kasikara C, Davra V, Meroni M, Chung RT, et al: Macrophage MerTK promotes liver fibrosis in nonalcoholic steatohepatitis. Cell Metab. 31:406–421. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tsukamoto H: Cytokine regulation of hepatic stellate cells in liver fibrosis. Alcohol Clin Exp Res. 23:911–916. 1999. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Li M, Zhao X, Wang H, Zhu J, Wang C, Zhou M, Dong H and Zhou R: Upregulation of KSRP by miR-27b attenuates schistosomiasis-induced hepatic fibrosis by targeting TGF-β1. FASEB J. 34:4120–4133. 2020. View Article : Google Scholar : PubMed/NCBI | |
Huang JL, Fu YP, Gan W, Liu G, Zhou PY, Zhou C, Sun BY, Guan RY, Zhou J, Fan J, et al: Hepatic stellate cells promote the progression of hepatocellular carcinoma through microRNA-1246-RORα-Wnt/β-Catenin axis. Cancer Lett. 476:140–151. 2020. View Article : Google Scholar : PubMed/NCBI | |
Winkler I, Bitter C, Winkler S, Weichenhan D, Thavamani A, Hengstler JG, Borkham-Kamphorst E, Kohlbacher O, Plass C, Geffers R, et al: Identification of Pparγ-modulated miRNA hubs that target the fibrotic tumor microenvironment. Proc Natl Acad Sci USA. 117:454–463. 2020. View Article : Google Scholar : PubMed/NCBI | |
Dawood RM, El-Meguid MA, Ibrahim MK, Bader El Din NG, Barakat A, El-Wakeel K, Alla MDAA, Wu GY and El Awady MK: Dysregulation of fibrosis related genes in HCV induced liver disease. Gene. 664:58–69. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chouteau P, Defer N, Florimond A, Caldéraro J, Higgs M, Gaudin A, Mérour E, Dhumeaux D, Lerat H and Pawlotsky JM: Hepatitis C virus (HCV) protein expression enhances hepatic fibrosis in HCV transgenic mice exposed to a fibrogenic agent. J Hepatol. 57:499–507. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mazzocca A, Sciammetta SC, Carloni V, Cosmi L, Annunziato F, Harada T, Abrignani S and Pinzani M: Binding of hepatitis C virus envelope protein E2 to CD81 up-regulates matrix metalloproteinase-2 in human hepatic stellate cells. J Biol Chem. 280:11329–11339. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bataller R, Paik YH, Lindquist JN, Lemasters JJ and Brenner DA: Hepatitis C virus core and nonstructural proteins induce fibrogenic effects in hepatic stellate cells. Gastroenterology. 126:529–540. 2004. View Article : Google Scholar : PubMed/NCBI | |
Coenen M, Nischalke HD, Krämer B, Langhans B, Glässner A, Schulte D, Körner C, Sauerbruch T, Nattermann J and Spengler U: Hepatitis C virus core protein induces fibrogenic actions of hepatic stellate cells via toll-like receptor 2. Lab Invest. 91:1375–1382. 2011. View Article : Google Scholar : PubMed/NCBI | |
Charrier A, Chen R, Chen L, Kemper S, Hattori T, Takigawa M and Brigstock DR: Exosomes mediate intercellular transfer of pro-fibrogenic connective tissue growth factor (CCN2) between hepatic stellate cells, the principal fibrotic cells in the liver. Surgery. 156:548–555. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li M, Jiang M, Meng J and Tao L: Exosomes: Carriers of pro-fibrotic signals and therapeutic targets in fibrosis. Curr Pharm Des. 25:4496–4509. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kim JH, Lee CH and Lee SW: Exosomal transmission of MicroRNA from HCV replicating cells stimulates transdifferentiation in hepatic stellate cells. Mol Ther Nucleic Acids. 14:483–497. 2019. View Article : Google Scholar : PubMed/NCBI | |
Khatun M and Ray RB: Mechanisms underlying hepatitis C virus-associated hepatic fibrosis. Cells. 8:12492019. View Article : Google Scholar | |
Devhare PB, Sasaki R, Shrivastava S, Di Bisceglie AM, Ray R and Ray RB: Exosome-mediated intercellular communication between hepatitis C virus-infected hepatocytes and hepatic stellate cells. J Virol. 91:e02225–e02216. 2017. View Article : Google Scholar : PubMed/NCBI | |
Njiomegnie GF, Read SA, Fewings N, George J, McKay F and Ahlenstiel G: Immunomodulation of the natural killer cell phenotype and response during HCV infection. J Clin Med. 9:10302020. View Article : Google Scholar | |
Glässner A, Eisenhardt M, Krämer B, Körner C, Coenen M, Sauerbruch T, Spengler U and Nattermann J: NK cells from HCV-infected patients effectively induce apoptosis of activated primary human hepatic stellate cells in a TRAIL-, FasL- and NKG2D-dependent manner. Lab Invest. 92:967–977. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang H and Yin S: Natural killer T cells in liver injury, inflammation and cancer. Expert Rev Gastroenterol Hepatol. 9:1077–1085. 2015. View Article : Google Scholar : PubMed/NCBI | |
de Lalla C, Galli G, Aldrighetti L, Romeo R, Mariani M, Monno A, Nuti S, Colombo M, Callea F, Porcelli SA, et al: Production of profibrotic cytokines by invariant NKT cells characterizes cirrhosis progression in chronic viral hepatitis. J Immunol. 173:1417–1425. 2004. View Article : Google Scholar : PubMed/NCBI | |
Locati M, Curtale G and Mantovani A: Diversity, mechanisms, and significance of macrophage plasticity. Annu Rev Pathol. 15:123–147. 2020. View Article : Google Scholar : PubMed/NCBI | |
Suzuki K, Meguro K, Nakagomi D and Nakajima H: Roles of alternatively activated M2 macrophages in allergic contact dermatitis. Allergol Int. 66:392–397. 2017. View Article : Google Scholar : PubMed/NCBI | |
Brass A and Brenndörfer ED: The role of chemokines in hepatitis C virus-mediated liver disease. Int J Mol Sci. 15:4747–4779. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wasmuth HE and Weiskirchen R: Pathogenesis of liver fibrosis: Modulation of stellate cells by chemokines. Z Gastroenterol. 48:38–45. 2010.(In German). View Article : Google Scholar : PubMed/NCBI | |
Liang YJ, Luo J, Lu Q, Zhou Y, Wu HW, Zheng D, Ren YY, Sun KY, Wang Y and Zhang ZS: Gene profile of chemokines on hepatic stellate cells of schistosome-infected mice and antifibrotic roles of CXCL9/10 on liver non-parenchymal cells. PLoS One. 7:e424902012. View Article : Google Scholar : PubMed/NCBI | |
Marra F and Tacke F: Roles for chemokines in liver disease. Gastroenterology. 147:577–594. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tan HX, Gong WZ, Zhou K, Xiao ZG, Hou FT, Huang T, Zhang L, Dong HY, Zhang WL, Liu Y and Huang ZC: CXCR4/TGF-β1 mediated hepatic stellate cells differentiation into carcinoma-associated fibroblasts and promoted liver metastasis of colon cancer. Cancer Biol Ther. 21:258–268. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ferrari SM, Fallahi P, Ruffilli I, Elia G, Ragusa F, Paparo SR, Patrizio A, Mazzi V, Colaci M, Giuggioli D, et al: Immunomodulation of CXCL10 secretion by hepatitis C virus: Could CXCL10 Be a prognostic marker of chronic hepatitis C? J Immunol Res. 2019:58789602019. View Article : Google Scholar : PubMed/NCBI | |
Pineda-Tenor D, Berenguer J, Jiménez-Sousa MA, Guzmán-Fulgencio M, Aldámiz-Echevarria T, Carrero A, García-Álvarez M, Diez C, Tejerina F, Briz V and Resino S: CXCL9, CXCL10 and CXCL11 polymorphisms are associated with sustained virologic response in HIV/HCV-coinfected patients. J Clin Virol. 61:423–429. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Chen L, Zou Z, Zhu B, Hu Z, Zeng P, Wu L and Xiong J: Hepatitis C virus infection induces elevation of CXCL10 in human brain microvascular endothelial cells. J Med Virol. 88:1596–1603. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zeremski M, Dimova R, Astemborski J, Thomas DL and Talal AH: CXCL9 and CXCL10 chemokines as predictors of liver fibrosis in a cohort of primarily African-American injection drug users with chronic hepatitis C. J Infect Dis. 204:832–836. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sahin H, Borkham-Kamphorst E, Kuppe C, Zaldivar MM, Grouls C, Al-samman M, Nellen A, Schmitz P, Heinrichs D, Berres ML, et al: Chemokine Cxcl9 attenuates liver fibrosis-associated angiogenesis in mice. Hepatology. 55:1610–1619. 2012. View Article : Google Scholar : PubMed/NCBI | |
Joshi D, Carey I, Foxton M, Al-Freah M, Bruce M, Heaton N, Quaglia A, O'Grady J, Aluvihare V and Agarwal K: CXCL10 levels identify individuals with rapid fibrosis at 12 months post-transplant for hepatitis C virus and predict treatment response. Clin Transplant. 28:569–578. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gorin JB, Malone DFG, Strunz B, Carlsson T, Aleman S, Björkström NK, Falconer K and Sandberg JK: Plasma FABP4 is associated with liver disease recovery during treatment-induced clearance of chronic HCV infection. Sci Rep. 10:20812020. View Article : Google Scholar : PubMed/NCBI | |
Lu Y, Lin LY, Tan JG, Deng HP, Li XH, Zhang Z, Li Y, Zhou Z, Xu X, Xie X and Mei SJ: A correlation study between gene polymorphism of Th cell expressed chemokine receptor CXCR3 and its ligand levels with HCV infection prognosis. Eur Rev Med Pharmacol Sci. 21:1290–1295. 2017.PubMed/NCBI | |
Berres ML, Asmacher S, Lehmann J, Jansen C, Görtzen J, Klein S, Meyer C, Strunk HM, Fimmers R, Tacke F, et al: CXCL9 is a prognostic marker in patients with liver cirrhosis receiving transjugular intrahepatic portosystemic shunt. J Hepatol. 62:332–339. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chalin A, Lefevre B, Devisme C, Barget N, Amiot L and Samson M: Circulating levels of CXCL11 and CXCL12 are biomarkers of cirrhosis in patients with chronic hepatitis C infection. Cytokine. 117:72–78. 2019. View Article : Google Scholar : PubMed/NCBI | |
Patidar M, Yadav N and Dalai SK: Interleukin 15: A key cytokine for immunotherapy. Cytokine Growth Factor Rev. 31:49–59. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jiao J, Ooka K, Fey H, Fiel MI, Rahmman AH, Kojima K, Hoshida Y, Chen X, de Paula T, Vetter D, et al: Interleukin-15 receptor α on hepatic stellate cells regulates hepatic fibrogenesis in mice. J Hepatol. 65:344–353. 2016. View Article : Google Scholar : PubMed/NCBI | |
Golden-Mason L, Kelly AM, Doherty DG, Traynor O, McEntee G, Kelly J, Hegarty JE and O'Farrelly C: Hepatic interleuklin 15 (IL-15) expression: Implications for local NK/NKT cell homeostasis and development. Clin Exp Immunol. 138:94–101. 2004. View Article : Google Scholar : PubMed/NCBI | |
Vahedi F, Lee AJ, Collins SE, Chew MV, Lusty E, Chen B, Dubey A, Richards CD, Feld JJ, Russell RS, et al: IL-15 and IFN-γ signal through the ERK pathway to inhibit HCV replication, independent of type I IFN signaling. Cytokine. 124:1544392019. View Article : Google Scholar : PubMed/NCBI | |
Isailovic N, Daigo K, Mantovani A and Selmi C: Interleukin-17 and innate immunity in infections and chronic inflammation. J Autoimmun. 60:1–11. 2015. View Article : Google Scholar : PubMed/NCBI | |
Abou El-Khier NT, Elhammady D, Arafa MM, Shahin D, Eladl E, Abousamra NK, Sharaf-Eldeen O, Shaker G and Esmael ME: Th17 and IL-17 as predictors of hepatic inflammation in patients with chronic hepatitis C virus infection and treated with direct antiviral therapy. Egypt J Immunol. 25:61–74. 2018.PubMed/NCBI | |
Gu Y, Hu X, Liu C, Qv X and Xu C: Interleukin (IL)-17 promotes macrophages to produce IL-8, IL-6 and tumour necrosis factor-alpha in aplastic anaemia. Br J Haematol. 142:109–114. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Huang D, Gao W, Yan J, Zhou W, Hou X, Liu M, Ren C, Wang S and Shen J: Lack of IL-17 signaling decreases liver fibrosis in murine schistosomiasis japonica. Int Immunol. 27:317–325. 2015. View Article : Google Scholar : PubMed/NCBI | |
Amara S, Lopez K, Banan B, Brown SK, Whalen M, Myles E, Ivy MT, Johnson T, Schey KL and Tiriveedhi V: Synergistic effect of pro-inflammatory TNFα and IL-17 in periostin mediated collagen deposition: Potential role in liver fibrosis. Mol Immunol. 64:26–35. 2015. View Article : Google Scholar : PubMed/NCBI | |
Elkhawaga AA, Hosni A, Zaky DZ, Kamel AA, Mohamed NA, Abozaid MA and El-Masry MA: Association of treg and TH17 cytokines with HCV pathogenesis and liver pathology. Egypt J Immunol. 26:55–63. 2019.PubMed/NCBI | |
Zhang LJ, Yu JP, Li D, Huang YH, Chen ZX and Wang XZ: Effects of cytokines on carbon tetrachloride-induced hepatic fibrogenesis in rats. World J Gastroenterol. 10:77–81. 2004. View Article : Google Scholar : PubMed/NCBI | |
Niess JH and Francés R: Editorial: The IL-20 cytokines and related family members in immunity and diseases. Front Immunol. 10:19762019. View Article : Google Scholar : PubMed/NCBI | |
Chiu YS, Wei CC, Lin YJ, Hsu YH and Chang MS: IL-20 and IL-20R1 antibodies protect against liver fibrosis. Hepatology. 60:1003–1014. 2014. View Article : Google Scholar : PubMed/NCBI | |
Rutz S, Eidenschenk C and Ouyang W: IL-22, not simply a Th17 cytokine. Immunol Rev. 252:116–132. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kronenberger B, Rudloff I, Bachmann M, Brunner F, Kapper L, Filmann N, Waidmann O, Herrmann E, Pfeilschifter J, Zeuzem S, et al: Interleukin-22 predicts severity and death in advanced liver cirrhosis: A prospective cohort study. BMC Med. 10:1022012. View Article : Google Scholar : PubMed/NCBI | |
Sertorio M, Hou X, Carmo RF, Dessein H, Cabantous S, Abdelwahed M, Romano A, Albuquerque F, Vasconcelos L, Carmo T, et al: IL-22 and IL-22 binding protein (IL-22BP) regulate fibrosis and cirrhosis in hepatitis C virus and schistosome infections. Hepatology. 61:1321–1331. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kong X, Feng D, Wang H, Hong F, Bertola A, Wang FS and Gao B: Interleukin-22 induces hepatic stellate cell senescence and restricts liver fibrosis in mice. Hepatology. 56:1150–1159. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lu DH, Guo XY, Qin SY, Luo W, Huang XL, Chen M, Wang JX, Ma SJ, Yang XW and Jiang HX: Interleukin-22 ameliorates liver fibrogenesis by attenuating hepatic stellate cell activation and downregulating the levels of inflammatory cytokines. World J Gastroenterol. 21:1531–1545. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhao Z, Lin CY and Cheng K: siRNA- and miRNA-based therapeutics for liver fibrosis. Transl Res. 214:17–29. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shaker OG and Senousy MA: Serum microRNAs as predictors for liver fibrosis staging in hepatitis C virus-associated chronic liver disease patients. J Viral Hepat. 24:636–644. 2017. View Article : Google Scholar : PubMed/NCBI | |
Coll M, El Taghdouini A, Perea L, Mannaerts I, Vila-Casadesús M, Blaya D, Rodrigo-Torres D, Affò S, Morales-Ibanez O, Graupera I, et al: Integrative miRNA and gene expression profiling analysis of human quiescent hepatic stellate cells. Sci Rep. 5:115492015. View Article : Google Scholar : PubMed/NCBI | |
Marquez RT, Bandyopadhyay S, Wendlandt EB, Keck K, Hoffer BA, Icardi MS, Christensen RN, Schmidt WN and McCaffrey AP: Correlation between microRNA expression levels and clinical parameters associated with chronic hepatitis C viral infection in humans. Lab Invest. 90:1727–1736. 2010. View Article : Google Scholar : PubMed/NCBI | |
Appourchaux K, Dokmak S, Resche-Rigon M, Treton X, Lapalus M, Gattolliat CH, Porchet E, Martinot-Peignoux M, Boyer N, Vidaud M, et al: MicroRNA-based diagnostic tools for advanced fibrosis and cirrhosis in patients with chronic hepatitis B and C. Sci Rep. 6:349352016. View Article : Google Scholar : PubMed/NCBI | |
Ogawa T, Enomoto M, Fujii H, Sekiya Y, Yoshizato K, Ikeda K and Kawada N: MicroRNA-221/222 upregulation indicates the activation of stellate cells and the progression of liver fibrosis. Gut. 61:1600–1609. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Charrier A, Zhou Y, Chen R, Yu B, Agarwal K, Tsukamoto H, Lee LJ, Paulaitis ME and Brigstock DR: Epigenetic regulation of connective tissue growth factor by MicroRNA-214 delivery in exosomes from mouse or human hepatic stellate cells. Hepatology. 59:1118–1129. 2014. View Article : Google Scholar : PubMed/NCBI | |
Guo CJ, Pan Q, Li DG, Sun H and Liu BW: miR-15b and miR-16 are implicated in activation of the rat hepatic stellate cell: An essential role for apoptosis. J Hepatol. 50:766–778. 2009. View Article : Google Scholar : PubMed/NCBI | |
Li J, Ghazwani M, Zhang Y, Lu J, Li J, Fan J, Gandhi CR and Li S: miR-122 regulates collagen production via targeting hepatic stellate cells and suppressing P4HA1 expression. J Hepatol. 58:522–528. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zheng J, Lin Z, Dong P, Lu Z, Gao S, Chen X, Wu C and Yu F: Activation of hepatic stellate cells is suppressed by microRNA-150. Int J Mol Med. 32:17–24. 2013. View Article : Google Scholar : PubMed/NCBI | |
Leask A: CCN2/decorin interactions: A novel approach to combating fibrosis? J Cell Commun Signal. 5:249–250. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yue ZH, Xia CS and Wang H: Performance evaluation of the mindray anti-HCV assay for the detection of hepatitis C virus infection. J Clin Lab Anal. 32:e226002018. View Article : Google Scholar : PubMed/NCBI | |
Wasitthankasem R, Vongpunsawad S, Siripon N, Suya C, Chulothok P, Chaiear K, Rujirojindakul P, Kanjana S, Theamboonlers A, Tangkijvanich P and Poovorawan Y: Genotypic distribution of hepatitis C virus in Thailand and Southeast Asia. PLoS One. 10:e01267642015. View Article : Google Scholar : PubMed/NCBI | |
He J, Xiu B, Wang G, Chen K, Feng X, Song X, Zhu C, Ling S and Zhang H: Double-antigen sandwich ELISA for the detection of anti-hepatitis C virus antibodies. J Virol Methods. 171:163–168. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kim S, Kim JH, Yoon S, Park YH and Kim HS: Clinical performance evaluation of four automated chemiluminescence immunoassays for hepatitis C virus antibody detection. J Clin Microbiol. 46:3919–3923. 2008. View Article : Google Scholar : PubMed/NCBI | |
Heinrichs A, Antoine M, Steensels D, Montesinos I and Delforge ML: HCV false positive immunoassays in patients with LVAD: A potential trap! J Clin Virol. 78:44–46. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ali A and Lal A: False positivity of serological tests for hepatitis C virus. J Ayub Med Coll Abbottabad. 22:43–45. 2010.PubMed/NCBI | |
Vo MT, Bruhn R, Kaidarova Z, Custer BS, Murphy EL and Bloch EM: A retrospective analysis of false-positive infectious screening results in blood donors. Transfusion. 56:457–465. 2016. View Article : Google Scholar : PubMed/NCBI | |
Moorman AC, Drobenuic J and Kamili S: Prevalence of false-positive hepatitis C antibody results, national health and nutrition examination study (NHANES) 2007–2012. J Clin Virol. 89:1–4. 2017. View Article : Google Scholar : PubMed/NCBI | |
Scott JD and Gretch DR: Molecular diagnostics of hepatitis C virus infection: A systematic review. JAMA. 297:724–732. 2007. View Article : Google Scholar : PubMed/NCBI | |
Safic Stanic H, Babic I, Maslovic M, Dogic V, Bingulac-Popovic J, Miletic M, Jurakovic-Loncar N, Vuk T, Strauss-Patko M and Jukic I: Three-year experience in NAT screening of blood donors for transfusion transmitted viruses in croatia. Transfus Med Hemother. 44:415–420. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bustin SA: Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): Trends and problems. J Mol Endocrinol. 29:23–39. 2002. View Article : Google Scholar : PubMed/NCBI | |
Papadopoulos N, Vasileiadi S, Papavdi M, Sveroni E, Antonakaki P, Dellaporta E, Koutli E, Michalea S, Manolakopoulos S, Koskinas J and Deutsch M: Liver fibrosis staging with combination of APRI and FIB-4 scoring systems in chronic hepatitis C as an alternative to transient elastography. Ann Gastroenterol. 32:498–503. 2019.PubMed/NCBI | |
Kim WR, Berg T, Asselah T, Flisiak R, Fung S, Gordon SC, Janssen HL, Lampertico P, Lau D, Bornstein JD, et al: Evaluation of APRI and FIB-4 scoring systems for non-invasive assessment of hepatic fibrosis in chronic hepatitis B patients. J Hepatol. 64:773–780. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sagnelli C, Uberti-Foppa C, Pasquale G, De Pascalis S, Coppola N, Albarello L, Doglioni C, Lazzarin A and Sagnelli E: Factors influencing liver fibrosis and necroinflammation in HIV/HCV coinfection and HCV monoinfection. Infection. 41:959–967. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bedossa P and Patel K: Biopsy and noninvasive methods to assess progression of nonalcoholic fatty liver disease. Gastroenterology. 150:1811–1822. 2016. View Article : Google Scholar : PubMed/NCBI | |
Francque SM, De Pauw FF, Van den Steen GH, Van Marck EA, Pelckmans PA and Michielsen PP: Biopsy of focal liver lesions: Guidelines, comparison of techniques and cost-analysis. Acta Gastroenterol Belg. 66:160–165. 2003.PubMed/NCBI | |
Childers RE and Ahn J: Diagnosis of alcoholic liver disease: Key foundations and new developments. Clin Liver Dis. 20:457–471. 2016. View Article : Google Scholar : PubMed/NCBI | |
Colli A, Fraquelli M, Andreoletti M, Marino B, Zuccoli E and Conte D: Severe liver fibrosis or cirrhosis: Accuracy of US for detection-analysis of 300 cases. Radiology. 227:89–94. 2003. View Article : Google Scholar : PubMed/NCBI | |
Shiha G, Seif S, Eldesoky A, Elbasiony M, Soliman R, Metwally A, Zalata K and Mikhail N: A simple bedside blood test (Fibrofast; FIB-5) is superior to FIB-4 index for the differentiation between non-significant and significant fibrosis in patients with chronic hepatitis C. Hepatol Int. 11:286–291. 2017. View Article : Google Scholar : PubMed/NCBI |