1
|
van der Linde D, Konings EE, Slager MA,
Witsenburg M, Helbing WA, Takkenberg JJ and Roos-Hesselink JW:
Birth prevalence of congenital heart disease worldwide: A
systematic review and meta-analysis. J Am Coll Cardiol.
58:2241–2247. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
Zhao QM, Ma XJ, Ge XL, Liu F, Yan WL, Wu
L, Ye M, Liang XC, Zhang J, Gao Y, et al: Pulse oximetry with
clinical assessment to screen for congenital heart disease in
neonates in China: A prospective study. Lancet. 384:747–754. 2014.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Bedard E, Mccarthy KP, Dimopoulos K,
Giannakoulas G, Gatzoulis MA and Ho SY: Structural abnormalities of
the pulmonary trunk in tetralogy of Fallot and potential clinical
implications: A morphological study. J Am Coll Cardiol.
54:1883–1890. 2009. View Article : Google Scholar : PubMed/NCBI
|
4
|
Ho S, Mccarthy KP, Josen M and Rigby ML:
Anatomic- echocardiographic correlates: An introduction to normal
and congenitally malformed hearts. Heart. 86 (Suppl 2):II3–II11.
2001.PubMed/NCBI
|
5
|
Kathiriya IS, Nora EP and Bruneau BG:
Investigating the transcriptional control of cardiovascular
development. Circ Res. 116:700–714. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Kaynak B, von Heydebreck A, Mebus S,
Seelow D, Hennig S, Vogel J, Sperling HP, Pregla R,
Alexi-Meskishvili V, Hetzer R, et al: Genome-wide array analysis of
normal and malformed human hearts. Circulation. 107:2467–2474.
2003. View Article : Google Scholar : PubMed/NCBI
|
7
|
Nemer M: Genetic insights into normal and
abnormal heart development. Cardiovasc Pathol. 17:48–54. 2008.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Simeone RM, Tinker SC, Gilboa SM, Agopian
AJ, Oster ME, Devine OJ and Honein MA; National Birth Defects
Prevention Study, : Proportion of selected congenital heart defects
attributable to recognized risk factors. Ann Epidemiol. 26:838–845.
2016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Pierpont ME, Basson CT, Benson DW Jr, Gelb
BD, Giglia TM, Goldmuntz E, McGee G, Sable CA, Srivastava D, Webb
CL, et al: Genetic basis for congenital heart defects: Current
knowledge: A scientific statement from the American heart
association congenital cardiac defects committee, council on
cardiovascular disease in the young: Endorsed by the American
academy of pediatrics. Circulation. 115:3015–3038. 2007. View Article : Google Scholar : PubMed/NCBI
|
10
|
Artavanis-Tsakonas S, Rand MD and Lake RJ:
Notch signaling: Cell fate control and signal integration in
developmen. Science. 284:770–776. 1999. View Article : Google Scholar : PubMed/NCBI
|
11
|
Luxán G, D'amato G, Macgrogan D and de la
Pompa JL: Endocardial Notch signaling in cardiac development and
disease. Circ Res. 118:e1–e18. 2016. View Article : Google Scholar : PubMed/NCBI
|
12
|
Mccright B, Lozier J and Gridley T: A
mouse model of Alagille syndrome: Notch2 as a genetic modifier of
Jag1 haploinsufficiency. Development. 129:1075–1082.
2002.PubMed/NCBI
|
13
|
Digilio MC, Luca AD, Lepri F, Guida V,
Ferese R, Dentici ML, Angioni A, Marino B and Dallapiccola B: JAG1
mutation in a patient with deletion 22q11.2 syndrome and tetralogy
of Fallot. Am J Med Genet A 161A. 3133–3136. 2013. View Article : Google Scholar
|
14
|
Garg V: Notch signaling in aortic valve
development and disease. Nakanishi T, Markwald RR, Baldwin HS,
Keller BB, Srivastava D and Yamagishi H: Etiology and morphogenesis
of congenital heart disease: From gene function and cellular
interaction to morphology [internet]. Tokyo: Springer; 2016,
Chapter 53. Jun 25. 2016, View Article : Google Scholar
|
15
|
Meester J, Verstraeten A, Alaerts M,
Schepers D, Van Laer L and Loeys BL: Overlapping but distinct roles
for NOTCH receptors in human cardiovascular disease. Clin Genet.
95:85–94. 2019. View Article : Google Scholar : PubMed/NCBI
|
16
|
Krebs LT, Xue Y, Norton CR, Shutter JR,
Maguire M, Sundberg JP, Gallahan D, Closson V, Kitajewski J,
Callahan R, et al: Notch signaling is essential for vascular
morphogenesis in mice. Genes Dev. 14:1343–1352. 2000.PubMed/NCBI
|
17
|
Leong KG, Hu X, Li L, Noseda M, Larrivée
B, Hull C, Hood L, Wong F and Karsan A: Activated Notch4 inhibits
angiogenesis: Role of beta 1-integrin activation. Mol Cell Biol.
22:2830–2841. 2002. View Article : Google Scholar : PubMed/NCBI
|
18
|
Uyttendaele H, Ho J, Rossant J and
Kitajewski J: Vascular patterning defects associated with
expression of activated Notch4 in embryonic endothelium. Proc Natl
Acad Sci USA. 98:5643–5648. 2001. View Article : Google Scholar : PubMed/NCBI
|
19
|
Noseda M, Mclean G, Niessen K, Chang L,
Pollet I, Montpetit R, Shahidi R, Dorovini-Zis K, Li L, Beckstead
B, et al: Notch activation results in phenotypic and functional
changes consistent with endothelial-to-mesenchymal transformation.
Circ Res. 94:910–917. 2004. View Article : Google Scholar : PubMed/NCBI
|
20
|
Page DJ, Miossec MJ, Williams SG, Monaghan
RM, Fotiou E, Cordell H, Sutcliffe L, Topf A, Bourgey M, Bourque G,
et al: Whole exome sequencing reveals the major genetic
contributors to nonsyndromic tetralogy of Fallot. Circ Res.
124:553–563. 2019. View Article : Google Scholar : PubMed/NCBI
|
21
|
Shames DS, Minna JD and Gazdar AF: DNA
methylation in health, disease, and cancer. Curr Mol Med. 7:85–102.
2007. View Article : Google Scholar : PubMed/NCBI
|
22
|
Boyes J and Bird A: DNA methylation
inhibits transcription indirectly via a methyl-CpG binding protein.
Cell. 64:1123–1134. 1991. View Article : Google Scholar : PubMed/NCBI
|
23
|
Sheng W, Chen L, Wang H, Ma X, Ma D and
Huang G: CpG island shore methylation of ZFPM2 is identified in
tetralogy of Fallot samples. Pediatr Res. 80:151–158. 2016.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Sheng W, Qian Y, Wang H, Ma X, Zhang P,
Diao L, An Q, Chen L, Ma D and Huang G: DNA methylation status of
NKX2-5, GATA4 and HAND1 in patients with tetralogy of Fallot. BMC
Med Genomics. 6:462013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Gong J, Sheng W, Ma D, Huang G and Liu F:
DNA methylation status of TBX20 in patients with tetralogy of
Fallot. BMC Med Genomics. 12:752019. View Article : Google Scholar : PubMed/NCBI
|
26
|
Emeny RT, Baumert J, Zannas AS, Kunze S,
Wahl S, Iurato S, Arloth J, Erhardt A, Balsevich G, Schmidt MV, et
al: Anxiety associated increased CpG methylation in the promoter of
Asb1: A translational approach evidenced by epidemiological and
clinical studies and a murine model. Neuropsychopharmacology.
43:342–353. 2018. View Article : Google Scholar : PubMed/NCBI
|
27
|
Bind MA, Coull BA, Peters A, Baccarelli
AA, Tarantini L, Cantone L and Schwartz JD, Vokonas PS, Koutrakis P
and Schwartz JD: Beyond the mean: Quantile regression to explore
the association of air pollution with gene-specific methylation in
the normative aging study. Environ Health Perspect. 123:759–765.
2015. View Article : Google Scholar : PubMed/NCBI
|
28
|
Somineni HK, Zhang X, Biagini MJ, Kovacic
MB, Ulm A, Jurcak N, Ryan PH, Hershey GKK and Ji H: Ten-eleven
translocation 1 (TET1) methylation is associated with childhood
asthma and traffic-related air pollution. J Allergy Clin Immunol.
137:797–805.e5. 2016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Plusquin M, Guida F, Polidoro S, Vermeulen
R, Raaschou-Nielsen O, Campanella G, Hoek G, Kyrtopoulos SA,
Georgiadis P, Naccarati A, et al: DNA methylation and exposure to
ambient air pollution in two prospective cohorts. Environ Int.
108:127–136. 2017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Wythe JD, Dang LT, Devine WP, Boudreau E,
Artap ST, He D, Schachterle W, Stainier DYR, Oettgen P, Black BL,
et al: ETS factors regulate Vegf-dependent arterial specification.
Dev Cell. 26:45–58. 2013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Oikawa T and Yamada T: Molecular biology
of the Ets family of transcription factors. Gene. 303:11–34. 2003.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Kola I, Brookes S, Green AR, Garber R,
Tymms M, Papas TS and Seth A: The Ets1 transcription factor is
widely expressed during murine embryo development and is associated
with mesodermal cells involved in morphogenetic processes such as
organ formation. Proc Natl Acad Sci USA. 90:7588–7592. 1993.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Ye M, Coldren C, Liang X, Mattina T,
Goldmuntz E, Benson DW, Ivy D, Perryman MB, Garrett-Sinha LA and
Grossfeld P: Deletion of ETS-1, a gene in the Jacobsen syndrome
critical region, causes ventricular septal defects and abnormal
ventricular morphology in mice. Hum Mol Genet. 19:648–656. 2010.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Gao Z, Kim GH, Mackinnon AC, Flagg AE,
Bassett B, Earley JU and Svensson EC: Ets1 is required for proper
migration and differentiation of the cardiac neural crest.
Development. 137:1543–1551. 2010. View Article : Google Scholar : PubMed/NCBI
|
35
|
Ramirez K, Chandler KJ, Spaulding C, Zandi
S, Sigvardsson M, Graves BJ and Kee BL: Gene deregulation and
chronic activation in natural killer cells deficient in the
transcription factor ETS1. Immunity. 36:921–932. 2012. View Article : Google Scholar : PubMed/NCBI
|
36
|
Li RZ, Pei HP, Watson DK and Papas TS:
EAP1/Daxx interacts with ETS1 and represses transcriptional
activation of ETS1 target genes. Oncogene. 19:745–753. 2000.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Pham VN, Lawson ND, Mugford JW, Dye L,
Castranova D, Lo B and Weinstein BM: Combinatorial function of ETS
transcription factors in the developing vasculature. Dev Biol.
303:772–783. 2007. View Article : Google Scholar : PubMed/NCBI
|
38
|
TFSEARCH, . http://www.cbrc.jp/research/db/TFSEARCH.htmlJune
13–2020
|
39
|
JASPAR database, . http://jaspar.binf.ku.dk/cgi-bin/jaspar_db.pl?rm=browse&db=core&tax_group=vertebratesJune
13–2020
|
40
|
Iso T, Hamamori Y and Kedes L: Notch
signaling in vascular development. Arterioscler Thromb Vasc Biol.
23:543–553. 2003. View Article : Google Scholar : PubMed/NCBI
|
41
|
Villa N, Walker L, Lindsell CE, Gasson J,
Iruela-Arispe ML and Weinmaster G: Vascular expression of Notch
pathway receptors and ligands is restricted to arterial vessels.
Mech Dev. 108:161–164. 2001. View Article : Google Scholar : PubMed/NCBI
|
42
|
Wu B, Zhang Z, Lui W, Chen X, Wang Y,
Chamberlain AA, Moreno-Rodriguez RA, Markwald RR, O'Rourke BP,
Sharp DJ, et al: Endocardial cells form the coronary arteries by
angiogenesis through myocardial-endocardial VEGF signaling. Cell.
151:1083–1096. 2012. View Article : Google Scholar : PubMed/NCBI
|
43
|
Wu B, Wang Y, Lui W, Langworthy M,
Tompkins KL, Hatzopoulos AK, Baldwin HS and Zhou B: Nfatc1
coordinates valve endocardial cell lineage development required for
heart valve formation. Circ Res. 109:183–192. 2011. View Article : Google Scholar : PubMed/NCBI
|
44
|
Borgel J, Guibert S, Li Y, Chiba H,
Schübeler D, Sasaki H, Forné T and Weber M: Targets and dynamics of
promoter DNA methylation during early mouse development. Nat Genet.
42:1093–1100. 2010. View
Article : Google Scholar : PubMed/NCBI
|
45
|
Jones PA and Takai D: The role of DNA
methylation in mammalian epigenetics. Science. 293:1068–1070. 2001.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Chamberlain AA, Lin M, Lister RL, Maslov
AA, Wang Y, Suzuki M, Wu B, Greally JM, Zheng D and Zhou B: DNA
methylation is developmentally regulated for genes essential for
cardiogenesis. J Am Heart Assoc. 3:e9762014. View Article : Google Scholar
|
47
|
Feinberg AP: The key role of epigenetics
in human disease prevention and mitigation. N Engl J Med.
378:1323–1334. 2018. View Article : Google Scholar : PubMed/NCBI
|
48
|
Sheng W, Wang H, Ma X, Qian Y, Zhang P, Wu
Y, Zheng F, Chen L, Huang G and Ma D: LINE-1 methylation status and
its association with tetralogy of fallot in infants. BMC Med
Genomics. 5:202012. View Article : Google Scholar : PubMed/NCBI
|
49
|
Tsuboi K, Nagatomo T, Gohno T, Higuchi T,
Sasaki S, Fujiki N, Kurosumi M, Takei H, Yamaguchi Y, Niwa T and
Hayashi SI: Single CpG site methylation controls estrogen receptor
gene transcription and correlates with hormone therapy resistance.
J Steroid Biochem Mol Biol. 171:209–217. 2017. View Article : Google Scholar : PubMed/NCBI
|
50
|
Fürst RW, Kliem H, Meyer HH and Ulbrich
SE: A differentially methylated single CpG-site is correlated with
estrogen receptor alpha transcription. J Steroid Biochem Mol Biol.
130:96–104. 2012. View Article : Google Scholar : PubMed/NCBI
|
51
|
Bartels SJ, Spruijt CG, Brinkman AB,
Jansen PW, Vermeulen M and Stunnenberg HG: A SILAC-based screen for
Methyl-CpG binding proteins identifies RBP-J as a DNA methylation
and sequence-specific binding protein. PLoS One. 6:e258842011.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Mann IK, Chatterjee R, Zhao J, He X,
Weirauch MT, Hughes TR and Vinson C: CG methylated microarrays
identify a novel methylated sequence bound by the CEBPB|ATF4
heterodimer that is active in vivo. Genome Res. 23:988–997. 2013.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Irizarry RA, Ladd-Acosta C, Wen B, Wu ZJ,
Montano C, Onyango P, Cui HM, Gabo K, Rongione M, Webster M, et al:
The human colon cancer methylome shows similar hypo- and
hypermethylation at conserved tissue-specific CpG island shores.
Nat Genet. 41:178–186. 2009. View
Article : Google Scholar : PubMed/NCBI
|
54
|
Portela A and Esteller M: Epigenetic
modifications and human disease. Nat Biotechnol. 28:1057–1068.
2010. View Article : Google Scholar : PubMed/NCBI
|
55
|
Claus R, Lucas DM, Stilgenbauer S, Ruppert
AS, Yu L, Zucknick M, Mertens D, Bühler A, Oakes CC, Larson RA, et
al: Quantitative DNA methylation analysis identifies a single CpG
dinucleotide important for ZAP-70 expression and predictive of
prognosis in chronic lymphocytic leukemia. J Clin Oncol.
30:2483–2491. 2012. View Article : Google Scholar : PubMed/NCBI
|
56
|
Ceccarelli V, Racanicchi S, Martelli MP,
Nocentini G, Fettucciari K, Riccardi C, Marconi P, Nardo PD,
Grignani F, Binaglia L and Vecchini A: Eicosapentaenoic acid
demethylates a single CpG that mediates expression of tumor
suppressor CCAAT/enhancer-binding protein delta in U937 leukemia
cells. J Biol Chem. 286:27092–27102. 2011. View Article : Google Scholar : PubMed/NCBI
|