1
|
Abdulhannan P, Russell DA and
Homer-Vanniasinkam S: Peripheral arterial disease: A literature
review. Br Med Bull. 104:21–39. 2012. View Article : Google Scholar : PubMed/NCBI
|
2
|
Fowkes FG, Rudan D, Rudan I, Aboyans V,
Denenberg JO, McDermott MM, Norman PE, Sampson UK, Williams LJ,
Mensah GA and Criqui MH: Comparison of global estimates of
prevalence and risk factors for peripheral artery disease in 2000
and 2010: A systematic review and analysis. Lancet. 382:1329–1340.
2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Criqui MH and Aboyans V: Epidemiology of
peripheral artery disease. Circ Res. 116:1509–1526. 2015.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Collinson DJ and Donnelly R: Therapeutic
angiogenesis in peripheral arterial disease: Can biotechnology
produce an effective collateral circulation? Eur J Vasc Endovasc
Surg. 28:9–23. 2004. View Article : Google Scholar : PubMed/NCBI
|
5
|
Vandekeere S, Dewerchin M and Carmeliet P:
Angiogenesis revisited: An overlooked role of endothelial cell
metabolism in vessel sprouting. Microcirculation. 22:509–517. 2015.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Taniyama Y, Azuma J, Rakugi H and
Morishita R: Plasmid DNA-based gene transfer with ultrasound and
microbubbles. Curr Gene Ther. 11:485–490. 2011. View Article : Google Scholar : PubMed/NCBI
|
7
|
Forster R, Liew A, Bhattacharya V, Shaw J
and Stansby G: Gene therapy for peripheral arterial disease.
Cochrane Database Syst Rev. 10:CD0120582018.PubMed/NCBI
|
8
|
Bartel DP: MicroRNAs: Target recognition
and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI
|
9
|
Lu TX and Rothenberg ME: MicroRNA. J
Allergy Clin Immunol. 141:1202–1207. 2018. View Article : Google Scholar : PubMed/NCBI
|
10
|
Bartel DP: Metazoan MicroRNAs. Cell.
173:20–51. 2018. View Article : Google Scholar : PubMed/NCBI
|
11
|
miRBase. Release 22.1. simplehttp://www.mirbase.orgOctober. 2018
|
12
|
Zhao J, Li X, Hu J, Chen F, Qiao S, Sun X,
Gao L, Xie J and Xu B: Mesenchymal stromal cell-derived exosomes
attenuate myocardial ischaemia-reperfusion injury through
miR-182-regulated macrophage polarization. Cardiovasc Res.
115:1205–1216. 2019. View Article : Google Scholar : PubMed/NCBI
|
13
|
Hou Z, Qin X, Hu Y, Zhang X, Li G, Wu J,
Li J, Sha J, Chen J, Xia J, et al: Longterm exercise-derived
exosomal miR-342-5p: A novel exerkine for cardioprotection. Circ
Res. 124:1386–1400. 2019. View Article : Google Scholar : PubMed/NCBI
|
14
|
Xu X, Tian L and Zhang Z: Triptolide
inhibits angiogenesis in microvascular endothelial cells through
regulation of miR-92a. J Physiol Biochem. 75:573–583. 2019.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Ando H, Okamoto A, Yokota M, Shimizu K,
Asai T, Dewa T and Oku N: Development of a miR-92a delivery system
for anti-angiogenesis-based cancer therapy. J Gene Med. 15:20–27.
2013. View
Article : Google Scholar : PubMed/NCBI
|
16
|
Shi Z, Chen Q, Li C, Wang L, Qian X, Jiang
C, Liu X, Wang X, Li H, Kang C, et al: MiR-124 governs glioma
growth and angiogenesis and enhances chemosensitivity by targeting
R-Ras and N-Ras. Neuro Oncol. 16:1341–1353. 2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhang G, Chen L, Khan AA, Li B, Gu B, Lin
F, Su X and Yan J: miRNA-124-3p/neuropilin-1(NRP-1) axis plays an
important role in mediating glioblastoma growth and angiogenesis.
Int J Cancer. 143:635–644. 2018. View Article : Google Scholar : PubMed/NCBI
|
18
|
Guo ML, Guo LL and Weng YQ: Implication of
peripheral blood miRNA-124 in predicting acute myocardial
infarction. Eur Rev Med Pharmacol Sci. 21:1054–1059.
2017.PubMed/NCBI
|
19
|
Xu SY, Jiang XL, Liu Q, Xu J, Huang J, Gan
SW, Lu WT, Zhuo F, Yang M and Sun SQ: Role of rno-miR-124-3p in
regulating MCT1 expression in rat brain after permanent focal
cerebral ischemia. Genes Dis. 6:398–406. 2019. View Article : Google Scholar : PubMed/NCBI
|
20
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
21
|
He Y, Luo Y, Tang S, Rajantie I, Salven P,
Heil M, Zhang R, Luo D, Li X, Chi H, et al: Critical function of
Bmx/Etk in ischemia-mediated arteriogenesis and angiogenesis. J
Clin Invest. 116:2344–2355. 2006.PubMed/NCBI
|
22
|
Hazarika S, Farber CR, Dokun AO,
Pitsillides AN, Wang T, Lye RJ and Annex BH: MicroRNA-93 controls
perfusion recovery after hindlimb ischemia by modulating expression
of multiple genes in the cell cycle pathway. Circulation.
127:1818–1828. 2013. View Article : Google Scholar : PubMed/NCBI
|
23
|
National Reaearch Council (US) Committee
for the Guide for the Care and Use of Laboratory Animals: Guide for
the Care and Use of Laboratory Animals. 8th edition. National
Academies Press (US); Washington, DC: 2011
|
24
|
Gerhard-Herman MD, Gornik HL, Barrett C,
Barshes NR, Corriere MA, Drachman DE, Fleisher LA, Fowkes FGR,
Hamburg NM, Kinlay S, et al: 2016 AHA/ACC Guideline on the
Management of Patients With Lower Extremity Peripheral Artery
Disease: A Report of the American College of Cardiology/American
Heart Association Task Force on Clinical Practice Guidelines. J Am
Coll Cardiol. 69:e71–e126. 2017. View Article : Google Scholar : PubMed/NCBI
|
25
|
Aboyans V, Criqui MH, Abraham P, Allison
MA, Creager MA, Diehm C, Fowkes FG, Hiatt WR, Jönsson B, Lacroix P,
et al: Measurement and interpretation of the ankle-brachial index:
A scientific statement from the American Heart Association.
Circulation. 126:2890–2909. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Wu D, Potluri N, Lu J, Kim Y and
Rastinejad F: Structural integration in hypoxia-inducible factors.
Nature. 524:303–308. 2015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Semenza GL: Life with oxygen. Science.
318:62–64. 2007. View Article : Google Scholar : PubMed/NCBI
|
28
|
Muñoz-Sánchez J and Chánez-Cárdenas ME:
The use of cobalt chloride as a chemical hypoxia model. J Appl
Toxicol. 39:556–570. 2019. View Article : Google Scholar : PubMed/NCBI
|
29
|
Chung AS and Ferrara N: Developmental and
pathological angiogenesis. Annu Rev Cell Dev Biol. 27:563–584.
2011. View Article : Google Scholar : PubMed/NCBI
|
30
|
Miyazaki T, Taketomi Y, Saito Y, Hosono T,
Lei XF, Kim-Kaneyama J, Arata S, Takahashi H, Murakami M and
Miyazaki A: Calpastatin counteracts pathological angiogenesis by
inhibiting suppressor of cytokine signaling 3 degradation in
vascular endothelial cells. Circ Res. 116:1170–1181. 2015.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Lin JS, Olson CM, Johnson ES and Whitlock
EP: The ankle-brachial index for peripheral artery disease
screening and cardiovascular disease prediction among asymptomatic
adults: A systematic evidence review for the U.S. Preventive
Services Task Force. Ann Intern Med. 159:333–341. 2013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Kravos A and Bubnic-Sotosek K:
Ankle-brachial index screening for peripheral artery disease in
asymptomatic patients between 50 and 70 years of age. J Int Med
Res. 37:1611–1619. 2009. View Article : Google Scholar : PubMed/NCBI
|
33
|
Veith AP, Henderson K, Spencer A, Sligar
AD and Baker AB: Therapeutic strategies for enhancing angiogenesis
in wound healing. Adv Drug Deliv Rev. 146:97–125. 2019. View Article : Google Scholar : PubMed/NCBI
|
34
|
Mitsos S, Katsanos K, Koletsis E, Kagadis
GC, Anastasiou N, Diamantopoulos A, Karnabatidis D and Dougenis D:
Therapeutic angiogenesis for myocardial ischemia revisited: Basic
biological concepts and focus on latest clinical trials.
Angiogenesis. 15:1–22. 2012. View Article : Google Scholar : PubMed/NCBI
|
35
|
Rupaimoole R, Calin GA, Lopez-Berestein G
and Sood AK: miRNA deregulation in cancer cells and the tumor
microenvironment. Cancer Discov. 6:235–246. 2016. View Article : Google Scholar : PubMed/NCBI
|
36
|
Mehta A and Baltimore D: MicroRNAs as
regulatory elements in immune system logic. Nat Rev Immunol.
16:279–294. 2016. View Article : Google Scholar : PubMed/NCBI
|
37
|
Bhalala OG, Srikanth M and Kessler JA: The
emerging roles of microRNAs in CNS injuries. Nat Rev Neurol.
9:328–339. 2013. View Article : Google Scholar : PubMed/NCBI
|
38
|
Katz MG, Fargnoli AS, Kendle AP, Hajjar RJ
and Bridges CR: The role of microRNAs in cardiac development and
regenerative capacity. Am J Physiol Heart Circ Physiol.
310:H528–541. 2016. View Article : Google Scholar : PubMed/NCBI
|
39
|
Sempere LF, Freemantle S, Pitha-Rowe I,
Moss E, Dmitrovsky E and Ambros V: Expression profiling of
mammalian microRNAs uncovers a subset of brain-expressed microRNAs
with possible roles in murine and human neuronal differentiation.
Genome Biol. 5:R132004. View Article : Google Scholar : PubMed/NCBI
|
40
|
Yoo AS, Sun AX, Li L, Shcheglovitov A,
Portmann T, Li Y, Lee-Messer C, Dolmetsch RE, Tsien RW and Crabtree
GR: MicroRNA-mediated conversion of human fibroblasts to neurons.
Nature. 476:228–231. 2011. View Article : Google Scholar : PubMed/NCBI
|
41
|
Chen Z and Han ZC: STAT3: A critical
transcription activator in angiogenesis. Med Res Rev. 28:185–200.
2008. View Article : Google Scholar : PubMed/NCBI
|
42
|
Koo MY, Park J, Lim JM, Joo SY, Shin SP,
Shim HB, Chung J, Kang D, Woo HA and Rhee SG: Selective inhibition
of the function of tyrosine-phosphorylated STAT3 with a
phosphorylation site-specific intrabody. Proc Natl Acad Sci USA.
111:6269–6274. 2014. View Article : Google Scholar : PubMed/NCBI
|
43
|
Yuan ZL, Guan YJ, Chatterjee D and Chin
YE: Stat3 dimerization regulated by reversible acetylation of a
single lysine residue. Science. 307:269–273. 2005. View Article : Google Scholar : PubMed/NCBI
|
44
|
Buettner R, Corzano R, Rashid R, Lin J,
Senthil M, Hedvat M, Schroeder A, Mao A, Herrmann A, Yim J, et al:
Alkylation of cysteine 468 in Stat3 defines a novel site for
therapeutic development. ACS Chem Biol. 6:432–443. 2011. View Article : Google Scholar : PubMed/NCBI
|
45
|
Stark GR, Kerr IM, Williams BR, Silverman
RH and Schreiber RD: How cells respond to interferons. Annu Rev
Biochem. 67:227–264. 1998. View Article : Google Scholar : PubMed/NCBI
|
46
|
Stark GR, Wang Y and Lu T: Lysine
methylation of promoter-bound transcription factors and relevance
to cancer. Cell Res. 21:375–380. 2011. View Article : Google Scholar : PubMed/NCBI
|
47
|
Zhou YL, Zhang L, Zhou Z, Liu W, Lu Y, He
S, Cui Y, Qin Y and Hua M: Antibody modified nanoparticle-mediated
delivery of miR-124 regulates apoptosis via repression the Stat3
signal in mycobacterial-infected microglia. J Biomed Nanotechnol.
14:2185–2197. 2018. View Article : Google Scholar : PubMed/NCBI
|
48
|
Zhang Y, Li X, Zhang J and Liang H:
Natural killer T cell cytotoxic activity in cervical cancer is
facilitated by the LINC00240/microRNA-124-3p/STAT3/MICA axis.
Cancer Lett. 474:63–73. 2020. View Article : Google Scholar : PubMed/NCBI
|
49
|
Vuokila N, Aronica E, Korotkov A, van
Vliet EA, Nuzhat S, Puhakka N and Pitkanen A: Chronic regulation of
miR-124-3p in the perilesional cortex after experimental and human
TBI. Int J Mol Sci. 21:24182020. View Article : Google Scholar
|
50
|
Ganta VC, Choi M, Kutateladze A and Annex
BH: VEGF165b modulates endothelial VEGFR1-STAT3 signaling pathway
and angiogenesis in human and experimental peripheral arterial
disease. Circ Res. 120:282–295. 2017. View Article : Google Scholar : PubMed/NCBI
|
51
|
Banerjee K and Resat H: Constitutive
activation of STAT3 in breast cancer cells: A review. Int J Cancer.
138:2570–2578. 2016. View Article : Google Scholar : PubMed/NCBI
|
52
|
Tartour E, Pere H, Maillere B, Terme M,
Merillon N, Taieb J, Sandoval F, Quintin-Colonna F, Lacerda K,
Karadimou A, et al: Angiogenesis and immunity: A bidirectional link
potentially relevant for the monitoring of antiangiogenic therapy
and the development of novel therapeutic combination with
immunotherapy. Cancer Metastasis Rev. 30:83–95. 2011. View Article : Google Scholar : PubMed/NCBI
|
53
|
He J, Bao Q, Zhang Y, Liu M, Lv H, Liu Y,
Yao L, Li B, Zhang C, He S, et al: Yes-associated protein promotes
angiogenesis via signal transducer and activator of transcription 3
in endothelial cells. Circ Res. 122:591–605. 2018. View Article : Google Scholar : PubMed/NCBI
|
54
|
Wan L, Zhang Q, Wang S, Gao Y, Chen X,
Zhao Y and Qian X: Gambogic acid impairs tumor angiogenesis by
targeting YAP/STAT3 signaling axis. Phytother Res. 33:1579–1591.
2019. View Article : Google Scholar : PubMed/NCBI
|
55
|
Suominen V, Uurto I, Saarinen J, Venermo M
and Salenius J: PAD as a risk factor for mortality among patients
with elevated ABI-A clinical study. Eur J Vasc Endovasc Surg.
39:316–322. 2010. View Article : Google Scholar : PubMed/NCBI
|