1
|
Goulielmos GN, Zervou MI, Myrthianou E,
Burska A, Niewold TB and Ponchel F: Genetic data: The new challenge
of personalized medicine, insights for rheumatoid arthritis
patients. Gene. 583:90–101. 2016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Ramos PS, Criswell LA, Moser KL, Comeau
ME, Williams AH, Pajewski NM, Chung SA, Graham RR, Zidovetzki R,
Kelly JA, et al: A comprehensive analysis of shared loci between
systemic lupus erythematosus (SLE) and sixteen autoimmune diseases
reveals limited genetic overlap. PLoS Genet. 7:e10024062011.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Martín JE, Bossini-Castillo L and Martín
J: Unraveling the genetic component of systemic sclerosis. Hum
Genet. 131:1023–1037. 2012. View Article : Google Scholar : PubMed/NCBI
|
4
|
International Consortium for Systemic
Lupus Erythematosus Genetics (SLEGEN), ; Harley JB,
Alarcón-Riquelme ME, Criswell LA, Jacob CO, Kimberly RP, Moser KL,
Tsao BP, Vyse TJ, Langefeld CD, et al: Genomewide association scan
in women with systemic lupus erythematosus identifies
susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat
Genet. 40:204–210. 2008. View
Article : Google Scholar : PubMed/NCBI
|
5
|
Gateva V, Sandling JK, Hom G, Taylor KE,
Chung SA, Sun X, Ortmann W, Kosoy R, Ferreira RC, Nordmark G, et
al: A large-scale replication study identifies TNIP1, PRDM1, JAZF1,
UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus.
Nat Genet. 41:1228–1233. 2009. View
Article : Google Scholar : PubMed/NCBI
|
6
|
Westra HJ, Martínez-Bonet M,
Onengut-Gumuscu S, Lee A, Luo Y, Teslovich N, Worthington J, Martin
J, Huizinga T, Klareskog L, et al: Fine-mapping and functional
studies highlight potential causal variants for rheumatoid
arthritis and type 1 diabetes. Nat Genet. 50:1366–1374. 2018.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Zochling J, Newell F, Charlesworth JC, Leo
P, Stankovich J, Cortes A, Zhou Y, Stevens W, Sahhar J, Roddy J, et
al: An ImmunoChip-based interrogation of scleroderma susceptibility
variants identifies a novel association at DNASE1L3. Arthritis Res
Ther. 16:4382014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Sisirak VB, Sally B, D'Agati V,
Martinez-Ortiz W, Özçakar ZB, David J, Rashidfarrokhi A, Yeste A,
Panea C, Chida AS, et al: Digestion of chromatin in apoptotic cell
microparticles prevents autoimmunity. Cell. 166:88–101. 2016.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Rodriguez AM, Rodin D, Nomura H, Morton
CC, Weremowicz S and Schneider MC: Identification, localization,
and expression of two novel human genes similar to
deoxyribonuclease I. Genomics. 42:507–513. 1997. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zeng Z, Parmelee D, Hyaw H, Coleman TA, Su
K, Zhang J, Gentz R, Ruben S, Rosen C and Li Y: Cloning and
characterization of a novel human DNase. Biochem Biophys Res
Commun. 23:499–504. 1997. View Article : Google Scholar
|
11
|
Chen WJ, Lee IS, Chen CY and Liao TH:
Biological functions of the disulfides in bovine pancreatic
deoxyribonuclease. Protein Sci. 13:875–883. 2004. View Article : Google Scholar : PubMed/NCBI
|
12
|
Helmick CG, Felson DT, Lawrence RC,
Gabriel S, Hirsch R, Kwoh CK, Liang MH, Kremers HM, Mayes MD,
Merkel PA, et al: Estimates of the prevalence of arthritis and
other rheumatic conditions in the United States. Part I. Arthritis
Rheum. 58:15–25. 2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Firestein GS: Evolving concepts of
rheumatoid arthritis. Nature. 423:356–361. 2003. View Article : Google Scholar : PubMed/NCBI
|
14
|
McAllister KM, Eyre S and Orozco G:
Genetics of rheumatoid arthritis: GWAS and beyond. Open Access
Rheumatology Res Rev. 3:31–46. 2013.
|
15
|
Gabrielli A, Avvedimento EV and Krieg T:
Scleroderma. N Engl J Med. 360:1989–2003. 2009. View Article : Google Scholar : PubMed/NCBI
|
16
|
Barnes J and Mayes MD: Epidemiology of
systemic sclerosis: Incidence, prevalence, survival, risk factors,
malignancy, and environmental triggers. Curr Opin Rheumatol.
24:165–170. 2012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Chizzolini C: T cells, B cells, and
polarized immune response in the pathogenesisof fibrosis and
systemic sclerosis. Curr Opin Rheumatol. 20:707–712. 2008.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Wallace B, Vummidi D and Khanna D:
Management of connective tissue diseases associated interstitial
lung disease: A review of the published literature. Curr Opin
Rheumatol. 28:236–245. 2016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Liu Z and Davidson A: Taming lupus-a new
understanding of pathogenesis is leading to clinical advances. Nat
Med. 18:871–882. 2012. View
Article : Google Scholar : PubMed/NCBI
|
20
|
UniProt Consortium: UniProt: A worldwide
hub of protein knowledge. Nucleic Acids Res. 47:D506–D515. 2019.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Berman HM, Westbrook J, Feng Z, Gilliland
G, Bhat TN, Weissig H, Shindyalov IN and Bourne PE: The protein
data bank. Nucleic Acids Res. 28:235–242. 2000. View Article : Google Scholar : PubMed/NCBI
|
22
|
Altschul SF, Madden TL, Schäffer AA, Zhang
J, Zhang Z, Miller W and Lipman DJ: Gapped BLAST and PSI-BLAST: A
new generation of protein database search programs. Nucleic Acids
Res. 25:3389–3402. 1997. View Article : Google Scholar : PubMed/NCBI
|
23
|
Notredame C, Higgins DG and Heringa J: A
novel method for fast and accurate multiple sequence alignment. Mol
Biol. 302:205–217. 2000. View Article : Google Scholar
|
24
|
Robert X and Gouet P: Deciphering key
features in protein structures with the new ENDscript server.
Nucleic Acids Res. 42((Web Server Issue)): W320–W324. 2014.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Gouet P, Robert X and Courcelle E:
ESPript/ENDscript: Extracting and rendering sequence and 3D
information from atomic structures of proteins. Nucleic Acids Res.
31:3320–3323. 2003. View Article : Google Scholar : PubMed/NCBI
|
26
|
Felsenstein J: Confidence limits on
phylogenies: An approach using the bootstrap. Evolution.
39:783–791. 1985. View Article : Google Scholar : PubMed/NCBI
|
27
|
Kumar S, Stecher G and Tamur K: MEGA7:
Molecular evolutionary genetics analysis version 7.0 for bigger
datasets. Mol Biol Evol. 33:870–1874. 2016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Felsenstein J: Evolutionary trees from DNA
sequences: A maximum likelihood approach. J Mol Evol. 17:368–376.
1981. View Article : Google Scholar : PubMed/NCBI
|
29
|
Saitou N and Nei M: The neighbor-joining
method: A new method for reconstructing phylogenetic trees. Mol
Biol Evol. 4:406–425. 1987.PubMed/NCBI
|
30
|
Gascuel O: BIONJ: An improved version of
the NJ algorithm based on a simple model of sequence data. Mol Biol
Evol. 14:685–695. 1997. View Article : Google Scholar : PubMed/NCBI
|
31
|
Tamura K, Nei M and Kumar S: Prospects for
inferring very large phylogenies by using the neighbor-joining
method. Proc Natl Acad Sci USA. 101:11030–11035. 2004. View Article : Google Scholar : PubMed/NCBI
|
32
|
Waterhouse A, Bertoni M, Bienert S, Studer
G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C,
Bordoli L, et al: SWISS-MODEL: Homology modelling of protein
structures and complexes. Nucleic Acids Res. 46:W296–W303. 2018.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Kabsch W, Mannherz HG, Suck D, Pai EF and
Holmes KC: Atomic structure of the actin: DNase I complex. Nature.
347:37–44. 1990. View
Article : Google Scholar : PubMed/NCBI
|
34
|
Parsiegla G, Noguere C, Santell L, Lazarus
RA and Bourne Y: The structure of human DNase I bound to magnesium
and phosphate ions points to a catalytic mechanism common to
members of the DNase I-like superfamily. Biochemistry.
51:10250–10258. 2012. View Article : Google Scholar : PubMed/NCBI
|
35
|
Sasaki K, Sakabe K, Sakabe N, Kondo H and
Shimomura M: Refined structure and solvent network of chicken
gizzard G-actin DNase 1 complex at 1.8Å resolution. Acta Cryst.
A49:C111–C112. 1993. View Article : Google Scholar
|
36
|
The PyMOL molecular graphics system,
version 1.7.4. Schrödinger, LLC; simplehttp://www.pymol.org
|
37
|
Andreou A, Giastas P, Christoforides E and
Eliopoulos EE: Structural and evolutionary insights within the
polysaccharide deacetylase gene family of Bacillus anthracis and
Bacillus cereus. Genes (Basel). 9:3862018. View Article : Google Scholar
|
38
|
Ueki M, Takeshita H, Fujihara J, Iida R,
Yuasa I, Kato H, Panduro A, Nakajima T, Kominato Y and Yasuda T:
Caucasian-specific allele in non-synonymous single nucleotide
polymorphisms of the gene encoding deoxyribonuclease I-like 3,
potentially relevant to autoimmunity, produces an inactive enzyme.
Clin Chim Acta. 407:20–24. 2009. View Article : Google Scholar : PubMed/NCBI
|
39
|
Ueki M, Fujihara J, Takeshita H,
Kimura-Kataoka K, Iida R, Yuasa I, Kato H and Yasuda T: Global
genetic analysis of all single nucleotide polymorphisms in exons of
the human deoxyribonuclease I-like 3 gene and their effect on its
catalytic activity. Electrophoresis. 32:1465–1472. 2011. View Article : Google Scholar : PubMed/NCBI
|
40
|
López-Isac E, Acosta-Herrera M, Kerick M,
Assassi S, Satpathy AT, Granja J, Mumbach MR, Beretta L, Simeón CP,
Carreira P, et al: GWAS for systemic sclerosis identifies multiple
risk loci and highlights fibrotic and vasculopathy pathways. Nat
Commun. 10:49552019. View Article : Google Scholar : PubMed/NCBI
|
41
|
Mayes MD, Bossini-Castillo L, Gorlova O,
Martin JE, Zhou X, Chen WV, Assassi S, Ying J, Tan FK, Arnett FC,
et al: Immunochip analysis identifies multiple susceptibility loci
for systemic sclerosis. Am J Hum Genet. 94:47–61. 2014. View Article : Google Scholar : PubMed/NCBI
|
42
|
Al-Mayouf SM, Sunker A, Abdwani R, Abrawi
SA, Almurshedi F, Alhashmi N, Al Sonbul A, Sewairi W, Qari A,
Abdallah E, et al: Loss-of-function variant in DNASE1L3 causes a
familial form of systemic lupus erythematosus. Nat Genet.
43:1186–1188. 2011. View
Article : Google Scholar : PubMed/NCBI
|
43
|
Zhao Q, Yang C, Wang J, Li Y and Yang P:
Serum level of DNase1l3 in patients with
dermatomyositis/polymyositis, systemic lupus erythematosus and
rheumatoid arthritis, and its association with disease activity.
Clin Exp Med. 17:459–465. 2017. View Article : Google Scholar : PubMed/NCBI
|
44
|
Serpas L, Chan RWY, Jiang P, Ni M, Sun K,
Rashidfarrokhi A, Soni C, Sisirak V, Lee WS, Cheng SH, et al:
Dnase1l3 deletion causes aberrations in length and end-motif
frequencies in plasma DNA. Proc Natl Acad Sci USA. 11:641–649.
2019. View Article : Google Scholar
|
45
|
Moser K, Kelly J, Lessard C and Harley JB:
Recent insights into the genetic basis of systemic lupus
erythematosus. Genes Immun. 10:373–379. 2009. View Article : Google Scholar : PubMed/NCBI
|
46
|
Goulielmos GN, Zervou MI, Vazgiourakis VM,
Ghodke-Puranik Y, Garyfallos A and Niewold TB: The genetics and
molecular pathogenesis of systemic lupus erythematosus (SLE) in
populations of different ancestry. Gene. 668:59–72. 2018.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Niewold TB: Interferon alpha-induced
lupus: Proof of principle. J Clin Rheumatol. 14:131–132. 2008.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Ko K, Koldobskaya Y, Rosenzweig E and
Niewold TB: Activation of the interferon pathway is dependent upon
autoantibodies in African-American SLE patients, but not in
European-American SLE patients. Front Immunol. 4:3092013.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Rahman A and Isenberg DA: Systemic lupus
erythematosus. N Engl J Med. 358:929–939. 2008. View Article : Google Scholar : PubMed/NCBI
|
50
|
Márquez A, Kerick M, Zhernakova A,
Gutierrez-Achury J, Chen WM, Onengut-Gumuscu S, González-Álvaro I,
Rodriguez- Rodriguez L, Rios-Fernández R, González-Gay MA, et al:
Meta-analysis of Immunochip data of four autoimmune diseases
reveals novel single-disease and cross-phenotype associations.
Genome Med. 10:972018. View Article : Google Scholar : PubMed/NCBI
|