1
|
Smith JA: Update on ankylosing
spondylitis: Current concepts in pathogenesis. Curr Allergy Asthma
Rep. 15:4892015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Leone A, Marino M, Dell'Atti C, Zecchi V,
Magarelli N and Colosimo C: Spinal fractures in patients with
ankylosing spondylitis. Rheumatol Int. 36:1335–1346. 2016.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Woodward LJ and Kam PC: Ankylosing
spondylitis: Recent developments and anaesthetic implications.
Anaesthesia. 64:540–548. 2009. View Article : Google Scholar : PubMed/NCBI
|
4
|
Brown MA and Wordsworth BP: Genetics in
ankylosing spondylitis-current state of the art and translation
into clinical outcomes. Best Pract Res Clin Rheumatol. 31:763–776.
2017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Hanson A and Brown MA: Genetics and the
causes of ankylosing spondylitis. Rheum Dis Clin North Am.
43:401–414. 2017. View Article : Google Scholar : PubMed/NCBI
|
6
|
Chen S, Li Y, Deng C, Li J, Wen X, Wu Z,
Hu C, Zhang S, Li P, Zhang X, et al: The associations between PD-1,
CTLA-4 gene polymorphisms and susceptibility to ankylosing
spondylitis: A meta-analysis and systemic review. Rheumatol Int.
36:33–44. 2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Karami J, Mahmoudi M, Amirzargar A,
Gharshasbi M, Jamshidi A, Aslani S and Nicknam MH: Promoter
hypermethylation of BCL11B gene correlates with downregulation of
gene transcription in ankylosing spondylitis patients. Genes Immun.
18:170–175. 2017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zhang P, Li Q, Qi J, Lv Q, Zheng X, Wu X
and Gu J: Association between vitamin D receptor gene polymorphism
and ankylosing spondylitis in Han Chinese. Int J Rheum Dis.
20:1510–1516. 2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Golder V and Schachna L: Ankylosing
spondylitis: An update. Aust Fam Physician. 42:780–784.
2013.PubMed/NCBI
|
10
|
Wellcome Trust Case Control Consortium;
Australo-Anglo- American Spondylitis Consortium (TASC), ; Burton
PR, Clayton DG, Cardon LR, Craddock N, Deloukas P, Duncanson A,
Kwiatkowski DP, McCarthy MI, et al: Association scan of 14,500
nonsynonymous SNPs in four diseases identifies autoimmunity
variants. Nat Genet. 39:1329–1337. 2007. View Article : Google Scholar : PubMed/NCBI
|
11
|
Brown MA, Kenna T and Wordsworth BP:
Genetics of ankylosing spondylitis-insights into pathogenesis. Nat
Rev Rheumatol. 12:81–91. 2016. View Article : Google Scholar : PubMed/NCBI
|
12
|
Ranganathan V, Gracey E, Brown MA, Inman
RD and Haroon N: Pathogenesis of ankylosing spondylitis-recent
advances and future directions. Nat Rev Rheumatol. 13:359–367.
2017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Kirsch T, Kim HJ and Winkles JA:
Progressive ankylosis gene (ank) regulates osteoblast
differentiation. Cells Tissues Organs. 189:158–162. 2009.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Kanaujiya J, Bastow E, Luxmi R, Hao Z,
Zattas D, Hochstrasser M, Reichenberger EJ and Chen IP: Rapid
degradation of progressive ankylosis protein (ANKH) in
craniometaphyseal dysplasia. Sci Rep. 8:157102018. View Article : Google Scholar : PubMed/NCBI
|
15
|
Mitton-Fitzgerald E, Gohr CM, Bettendorf B
and Rosenthal AK: The role of ANK in calcium pyrophosphate
deposition disease. Curr Rheumatol Rep. 18:252016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wang W, Xu J, Du B and Kirsch T: Role of
the progressive ankylosis gene (ank) in cartilage mineralization.
Mol Cell Biol. 25:312–323. 2005. View Article : Google Scholar : PubMed/NCBI
|
17
|
Williams CJ: The role of ANKH in
pathologic mineralization of cartilage. Curr Opin Rheumatol.
28:145–151. 2016. View Article : Google Scholar : PubMed/NCBI
|
18
|
Gurley KA, Reimer RJ and Kingsley DM:
Biochemical and genetic analysis of ANK in arthritis and bone
disease. Am J Hum Genet. 79:1017–1029. 2006. View Article : Google Scholar : PubMed/NCBI
|
19
|
Ho AM, Johnson MD and Kingsley DM: Role of
the mouse ank gene in control of tissue calcification and
arthritis. Science. 289:265–270. 2000. View Article : Google Scholar : PubMed/NCBI
|
20
|
Qin X, Jiang T, Liu S, Tan J, Wu H, Zheng
L and Zhao J: Effect of metformin on ossification and inflammation
of fibroblasts in ankylosing spondylitis: An in vitro study. J Cell
Biochem. 119:1074–1082. 2018. View Article : Google Scholar : PubMed/NCBI
|
21
|
Yu F, Cui Y, Zhou X, Zhang X and Han J:
Osteogenic differentiation of human ligament fibroblasts induced by
conditioned medium of osteoclast-like cells. Biosci Trends.
5:46–51. 2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Rutherford RB, Moalli M, Franceschi RT,
Wang D, Gu K and Krebsbach PH: Bone morphogenetic
protein-transduced human fibroblasts convert to osteoblasts and
form bone in vivo. Tissue Eng. 8:441–452. 2002. View Article : Google Scholar : PubMed/NCBI
|
23
|
Turner JD, Naylor AJ, Buckley C, Filer A
and Tak PP: Fibroblasts and osteoblasts in inflammation and bone
damage. Adv Exp Med Biol. 1060:37–54. 2018. View Article : Google Scholar : PubMed/NCBI
|
24
|
da Costa Fernandes CJ, do Nascimento AS,
da Silva RA and Zambuzzi WF: Fibroblast contributes for
osteoblastic phenotype in a MAPK-ERK and sonic hedgehog
signaling-independent manner. Mol Cell Biochem. 436:111–117. 2017.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Zou YC, Yang XW, Yuan SG, Zhang P, Ye YL
and Li YK: Downregulation of dickkopf-1 enhances the proliferation
and osteogenic potential of fibroblasts isolated from ankylosing
spondylitis patients via the Wnt/β-catenin signaling pathway in
vitro. Connect Tissue Res. 57:200–211. 2016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhang WH, Li XL, Guo Y and Zhang Y:
Proliferation and osteogenic activity of fibroblasts induced with
fibronectin. Braz J Med Biol Res. 50:e62722017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Chen F, Bi D, Cao G, Cheng C, Ma S, Liu Y
and Cheng K: Bone morphogenetic protein 7-transduced human
dermal-derived fibroblast cells differentiate into osteoblasts and
form bone in vivo. Connect Tissue Res. 59:223–232. 2018.PubMed/NCBI
|
28
|
van der Linden S, Valkenburg HA and Cats
A: Evaluation of diagnostic criteria for ankylosing spondylitis. A
proposal for modification of the New York criteria. Arthritis
Rheum. 27:361–368. 1984. View Article : Google Scholar : PubMed/NCBI
|
29
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Turowski P, Myles T, Hemmings BA,
Fernandez A and Lamb NJ: Vimentin dephosphorylation by protein
phosphatase 2A is modulated by the targeting subunit B55. Mol Biol
Cell. 10:1997–2015. 1999. View Article : Google Scholar : PubMed/NCBI
|
31
|
Tamamura Y, Otani T, Kanatani N, Koyama E,
Kitagaki J, Komori T, Yamada Y, Costantini F, Wakisaka S, Pacifici
M, et al: Developmental regulation of Wnt/beta-catenin signals is
required for growth plate assembly, cartilage integrity, and
endochondral ossification. J Biol Chem. 280:19185–19195. 2005.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Timms AE, Zhang Y, Bradbury L, Wordsworth
BP and Brown MA: Investigation of the role of ANKH in ankylosing
spondylitis. Arthritis Rheum. 48:2898–2902. 2003. View Article : Google Scholar : PubMed/NCBI
|
33
|
Tsui HW, Inman RD, Paterson AD, Reveille
JD and Tsui FW: ANKH variants associated with ankylosing
spondylitis: gender differences. Arthritis Res Ther. 7:R513–R525.
2005. View
Article : Google Scholar : PubMed/NCBI
|
34
|
Gurley KA, Chen H, Guenther C, Nguyen ET,
Rountree RB, Schoor M and Kingsley DM: Mineral formation in joints
caused by complete or joint-specific loss of ANK function. J Bone
Miner Res. 21:1238–1247. 2006. View Article : Google Scholar : PubMed/NCBI
|
35
|
Pendleton A, Johnson MD, Hughes A, Gurley
KA, Ho AM, Doherty M, Dixey J, Gillet P, Loeuille D, McGrath R, et
al: Mutations in ANKH cause chondrocalcinosis. Am J Hum Genet.
71:933–940. 2002. View
Article : Google Scholar : PubMed/NCBI
|
36
|
Skubutyte R, Markova D, Freeman TA,
Anderson DG, Dion AS, Williams CJ, Shapiro IM and Risbud MV:
Hypoxia-inducible factor regulation of ANK expression in nucleus
pulposus cells: Possible implications in controlling dystrophic
mineralization in the intervertebral disc. Arthritis Rheum.
62:2707–2715. 2010. View Article : Google Scholar : PubMed/NCBI
|
37
|
Sharma U, Pal D and Prasad R: Alkaline
phosphatase: An overview. Indian J Clin Biochem. 29:269–278. 2014.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Minashima T, Quirno M, Lee YJ and Kirsch
T: The role of the progressive ankylosis protein (ANK) in
adipogenic/osteogenic fate decision of precursor cells. Bone.
98:38–46. 2017. View Article : Google Scholar : PubMed/NCBI
|
39
|
Wei J and Karsenty G: An overview of the
metabolic functions of osteocalcin. Rev Endocr Metab Disord.
16:93–98. 2015. View Article : Google Scholar : PubMed/NCBI
|
40
|
An S, Gao Y and Ling J: Characterization
of human periodontal ligament cells cultured on three-dimensional
biphasic calcium phosphate scaffolds in the presence and absence of
L-ascorbic acid, dexamethasone and β-glycerophosphate in
vitro. Exp Ther Med. 10:1387–1393. 2015. View Article : Google Scholar : PubMed/NCBI
|
41
|
Hill TP, Später D, Taketo MM, Birchmeier W
and Hartmann C: Canonical Wnt/beta-catenin signaling prevents
osteoblasts from differentiating into chondrocytes. Dev Cell.
8:727–738. 2005. View Article : Google Scholar : PubMed/NCBI
|
42
|
Xu C, Wang J, Zhu T, Shen Y, Tang X, Fang
L and Xu Y: Cross-talking between PPAR and WNT signaling and its
regulation in mesenchymal stem cell differentiation. Curr Stem Cell
Res Ther. 11:247–254. 2016. View Article : Google Scholar : PubMed/NCBI
|
43
|
Day TF, Guo X, Garrett-Beal L and Yang Y:
Wnt/beta-catenin signaling in mesenchymal progenitors controls
osteoblast and chondrocyte differentiation during vertebrate
skeletogenesis. Dev Cell. 8:739–750. 2005. View Article : Google Scholar : PubMed/NCBI
|
44
|
Leucht P, Jiang J, Cheng D, Liu B,
Dhamdhere G, Fang MY, Monica SD, Urena JJ, Cole W, Smith LR, et al:
Wnt3a reestablishes osteogenic capacity to bone grafts from aged
animals. J Bone Joint Surg Am. 95:1278–1288. 2013. View Article : Google Scholar : PubMed/NCBI
|
45
|
Duan P and Bonewald LF: The role of the
wnt/β-catenin signaling pathway in formation and maintenance of
bone and teeth. Int J Biochem Cell Biol. 77:23–29. 2016. View Article : Google Scholar : PubMed/NCBI
|
46
|
Chen Y, Whetstone HC, Lin AC, Nadesan P,
Wei Q, Poon R and Alman BA: Beta-catenin signaling plays a
disparate role in different phases of fracture repair: Implications
for therapy to improve bone healing. PLoS Med. 4:e2492007.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Albers J, Keller J, Baranowsky A, Beil FT,
Catala-Lehnen P, Schulze J, Amling M and Schinke T: Canonical Wnt
signaling inhibits osteoclastogenesis independent of
osteoprotegerin. J Cell Biol. 200:537–549. 2013. View Article : Google Scholar : PubMed/NCBI
|
48
|
Xu L, Cui WH, Zhou WC, Li DL, Li LC, Zhao
P, Mo XT, Zhang Z and Gao J: Activation of Wnt/β-catenin signalling
is required for TGF-β/Smad2/3 signalling during myofibroblast
proliferation. J Cell Mol Med. 21:1545–1554. 2017. View Article : Google Scholar : PubMed/NCBI
|
49
|
Shi L, Wu YX, Yu JH, Chen X, Luo XJ and
Yin YR: Research of the relationship between β-catenin and
c-myc-mediated Wnt pathway and laterally spreading tumors
occurrence. Eur Rev Med Pharmacol Sci. 21:252–257. 2017.PubMed/NCBI
|
50
|
Loveridge N, Farquharson C, Hesketh JE,
Jakowlew SB, Whitehead CC and Thorp BH: The control of chondrocyte
differentiation during endochondral bone growth in vivo: Changes in
TGF-beta and the proto-oncogene c-myc. J Cell Sci. 105:949–956.
1993.PubMed/NCBI
|