1
|
Liu N and Olson EN: MicroRNA regulatory
networks in cardiovascular development. Dev Cell. 18:510–525. 2010.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Wilczynski B and Furlong EE: Challenges
for modeling global gene regulatory networks during development:
Insights from Drosophila. Dev Biol. 340:161–169. 2010.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Lints TJ, Parsons LM, Hartley L, Lyons I
and Harvey RP: Nkx-2.5: A novel murine homeobox gene expressed in
early heart progenitor cells and their myogenic descendants.
Development. 119:419–431. 1993.PubMed/NCBI
|
4
|
Bruneau BG, Nemer G, Schmitt JP, Charron
F, Robitaille L, Caron S, Conner DA, Gessler M, Nemer M, Seidman
CE, et al: A murine model of Holt-Oram syndrome defines roles of
the T-box transcription factor Tbx5 in cardiogenesis and disease.
Cell. 106:709–721. 2001. View Article : Google Scholar : PubMed/NCBI
|
5
|
Watt AJ, Battle MA, Li J and Duncan SA:
GATA4 is essential for formation of the proepicardium and regulates
cardiogenesis. Proc Natl Acad Sci USA. 101:12573–12578. 2004.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Bartel DP: MicroRNAs: Genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Xiang R, Lei H, Chen M, Li Q, Sun H, Ai J,
Chen T, Wang H, Fang Y and Zhou Q: The miR-17-92 cluster regulates
FOG-2 expression and inhibits proliferation of mouse embryonic
cardiomyocytes. Braz J Med Biol Res. 45:131–138. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Sluijter JP, van Mil A, van Vliet P, Metz
CH, Liu J, Doevendans PA and Goumans MJ: MicroRNA-1 and −499
regulate differentiation and proliferation in human-derived
cardiomyocyte progenitor cells. Arterioscler Thromb Vasc Biol.
30:859–868. 2010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Bartel DP: MicroRNAs: Target recognition
and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Li Y and Kowdley KV: MicroRNAs in common
human diseases. Genomics Proteomics Bioinformatics. 10:246–253.
2012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Chen J and Wang DZ: microRNAs in
cardiovascular development. J Mol Cell Cardiol. 52:949–957. 2012.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhao Y, Ransom JF, Li A, Vedantham V, von
Drehle M, Muth AN, Tsuchihashi T, McManus MT, Schwartz RJ and
Srivastava D: Dysregulation of cardiogenesis, cardiac conduction,
and cell cycle in mice lacking miRNA-1-2. Cell. 129:303–317. 2007.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Zhao Y, Samal E and Srivastava D: Serum
response factor regulates a muscle-specific microRNA that targets
Hand2 during cardiogenesis. Nature. 436:214–220. 2005. View Article : Google Scholar : PubMed/NCBI
|
14
|
Liu N, Bezprozvannaya S, Williams AH, Qi
X, Richardson JA, Bassel-Duby R and Olson EN: microRNA-133a
regulates cardiomyocyte proliferation and suppresses smooth muscle
gene expression in the heart. Genes Dev. 22:3242–3254. 2008.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Meder B, Katus HA and Rottbauer W: Right
into the heart of microRNA-133a. Genes Dev. 22:3227–3231. 2008.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Zhu S, Cao L, Zhu J, Kong L, Jin J, Qian
L, Zhu C, Hu X, Li M, Guo X, Han S, et al: Identification of
maternal serum microRNAs as novel non-invasive biomarkers for
prenatal detection of fetal congenital heart defects. Clin Chim
Acta. 424:66–72. 2013.doi: 10.1016/j.cca.2013.05.010. View Article : Google Scholar : PubMed/NCBI
|
17
|
Liu M, Chen Y, Song G, Chen B, Wang L, Li
X, Kong X, Shen Y and Qian L: MicroRNA-29c overexpression inhibits
proliferation and promotes apoptosis and differentiation in P19
embryonal carcinoma cells. Gene. 576:304–311. 2016. View Article : Google Scholar : PubMed/NCBI
|
18
|
Chen B, Song G, Liu M, Qian L, Wang L, Gu
H and Shen Y: Inhibition of miR-29c promotes proliferation, and
inhibits apoptosis and differentiation in P19 embryonic carcinoma
cells. Mol Med Rep. 13:2527–2535. 2016. View Article : Google Scholar : PubMed/NCBI
|
19
|
van Almen GC, Verhesen W, van Leeuwen RE,
van de Vrie M, Eurlings C, Schellings MW, Swinnen M, Cleutjens JP,
van Zandvoort MA, Heymans S, et al: MicroRNA-18 and microRNA-19
regulate CTGF and TSP-1 expression in age-related heart failure.
Aging Cell. 10:769–779. 2011. View Article : Google Scholar : PubMed/NCBI
|
20
|
Bakkers J: Zebrafish as a model to study
cardiac development and human cardiac disease. Cardiovasc Res.
91:279–288. 2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Westerfield M: The Zebrafish Book. A Guide
for The Laboratory Use of Zebrafish Danio (Brachydanio) rerio. 4th
Edition. University of Oregon Press; Eugene, OR, USA: 1993
|
22
|
Kimmel CB, Ballard WW, Kimmel SR, Ullmann
B and Schilling TF: Stages of embryonic development of the
zebrafish. Dev Dyn. 203:253–310. 1995. View Article : Google Scholar : PubMed/NCBI
|
23
|
Thisse C and Thisse B: High-resolution in
situ hybridization to whole-mount zebrafish embryos. Nat Protoc.
3:59–69. 2008. View Article : Google Scholar : PubMed/NCBI
|
24
|
Chen JN and Fishman MC: Zebrafish tinman
homolog demarcates the heart field and initiates myocardial
differentiation. Development. 122:3809–3816. 1996.PubMed/NCBI
|
25
|
Li M, Hu X, Zhu J, Zhu C, Zhu S, Liu X, Xu
J, Han S and Yu Z: Overexpression of miR-19b impairs cardiac
development in zebrafish by targeting ctnnb1. Cell Physiol Biochem.
33:1988–2002. 2014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Wang X, Zhou L, Jin J, Yang Y, Song G,
Shen Y, Liu H, Liu M, Shi C and Qian L: Knockdown of FABP3 impairs
cardiac development in Zebrafish through the retinoic acid
signaling pathway. Int J Mol Sci. 14:13826–13841. 2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Fishman MC and Chien KR: Fashioning the
vertebrate heart: Earliest embryonic decisions. Development.
124:2099–2117. 1997.PubMed/NCBI
|
29
|
MacDonald BT, Tamai K and He X:
Wnt/beta-catenin signaling: Components, mechanisms, and diseases.
Dev Cell. 17:9–26. 2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Cohen ED, Tian Y and Morrisey EE: Wnt
signaling: An essential regulator of cardiovascular
differentiation, morphogenesis and progenitor self-renewal.
Development. 135:789–798. 2008. View Article : Google Scholar : PubMed/NCBI
|
31
|
Blue GM, Kirk EP, Sholler GF, Harvey RP
and Winlaw DS: Congenital heart disease: Current knowledge about
causes and inheritance. Med J Aust. 197:155–159. 2012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Vecoli C, Pulignani S, Foffa I and
Andreassi MG: Congenital heart disease: The crossroads of genetics,
epigenetics and environment. Curr Genomics. 15:390–399. 2014.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Dolk H, Loane M and Garne E; European
Surveillance of Congenital Anomalies (EUROCAT) Working Group, :
Congenital heart defects in Europe: Prevalence and perinatal
mortality, 2000 to 2005. Circulation. 123:841–849. 2011. View Article : Google Scholar : PubMed/NCBI
|
34
|
Lin X and Xu X: Distinct functions of
Wnt/beta-catenin signaling in KV development and cardiac asymmetry.
Development. 136:207–217. 2009. View Article : Google Scholar : PubMed/NCBI
|
35
|
Teraoka H, Dong W and Hiraga T: Zebrafish
as a novel experimental model for developmental toxicology.
Congenit Anom (Kyoto). 43:123–132. 2003. View Article : Google Scholar : PubMed/NCBI
|
36
|
Hu N, Sedmera D, Yost HJ and Clark EB:
Structure and function of the developing zebrafish heart. Anat Rec.
260:148–157. 2000. View Article : Google Scholar : PubMed/NCBI
|
37
|
Quaife NM, Watson O and Chico TJ:
Zebrafish: An emerging model of vascular development and
remodelling. Curr Opin Pharmacol. 12:608–614. 2012. View Article : Google Scholar : PubMed/NCBI
|
38
|
Rochais F, Mesbah K and Kelly RG:
Signaling pathways controlling second heart field development. Circ
Res. 104:933–942. 2009. View Article : Google Scholar : PubMed/NCBI
|
39
|
Henderson DJ, Phillips HM and Chaudhry B:
Vang-like 2 and noncanonical Wnt signaling in outflow tract
development. Trends Cardiovasc Med. 16:38–45. 2006. View Article : Google Scholar : PubMed/NCBI
|