1
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Burney IA, Furrukh M and Al-Moundhri MS:
What are our options in the fight against breast cancer? Sultan
Qaboos Univ Med J. 14:e149–e151. 2014.PubMed/NCBI
|
3
|
Akarolo-Anthony SN, Ogundiran TO and
Adebamowo CA: Emerging breast cancer epidemic: Evidence from
Africa. Breast Cancer Res. 12 (Suppl 4):S82010. View Article : Google Scholar : PubMed/NCBI
|
4
|
Pan H, Gray R, Braybrooke J, Davies C,
Taylor C, McGale P, Peto R, Pritchard KI, Bergh J, Dowsett M, et
al: 20-Year risks of breast-cancer recurrence after stopping
endocrine therapy at 5 years. N Engl J Med. 377:1836–1846. 2017.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Roskoski R Jr: Cyclin-dependent protein
serine/threonine kinase inhibitors as anticancer drugs. Pharmacol
Res. 139:471–488. 2019. View Article : Google Scholar : PubMed/NCBI
|
6
|
Asghar U, Witkiewicz AK, Turner NC and
Knudsen ES: The history and future of targeting cyclin-dependent
kinases in cancer therapy. Nat Rev Drug Discov. 14:130–146. 2015.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Leake R: The cell cycle and regulation of
cancer cell growth. Ann N Y Acad Sci. 784:252–262. 1996. View Article : Google Scholar : PubMed/NCBI
|
8
|
Sarita Rajender P, Ramasree D, Bhargavi K,
Vasavi M and Uma V: Selective inhibition of proteins regulating
CDK/cyclin complexes: Strategy against cancer-a review. J Recept
Signal Transduct Res. 30:206–213. 2010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Rzymski T, Mikula M, Wiklik K and Brzozka
K: CDK8 kinase-an emerging target in targeted cancer therapy.
Biochim Biophys Acta. 1854:1617–1629. 2015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Xi M, Chen T, Wu C, Gao X, Wu Y, Luo X, Du
K, Yu L, Cai T, Shen R and Sun H: CDK8 as a therapeutic target for
cancers and recent developments in discovery of CDK8 inhibitors.
Eur J Med Chem. 164:77–91. 2019. View Article : Google Scholar : PubMed/NCBI
|
11
|
Pelish HE, Liau BB, Nitulescu II,
Tangpeerachaikul A, Poss ZC, Da Silva DH, Caruso BT, Arefolov A,
Fadeyi O, Christie AL, et al: Mediator kinase inhibition further
activates super-enhancer-associated genes in AML. Nature.
526:273–276. 2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Firestein R, Bass AJ, Kim SY, Dunn IF,
Silver SJ, Guney I, Freed E, Ligon AH, Vena N, Ogino S, et al: CDK8
is a colorectal cancer oncogene that regulates beta-catenin
activity. Nature. 455:547–551. 2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Donner AJ, Ebmeier CC, Taatjes DJ and
Espinosa JM: CDK8 is a positive regulator of transcriptional
elongation within the serum response network. Nat Struct Mol Biol.
17:194–201. 2010. View Article : Google Scholar : PubMed/NCBI
|
14
|
Trakala M and Malumbres M: Cyclin C
surprises in tumour suppression. Nat Cell Biol. 16:1031–1033. 2014.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Philip S, Kumarasiri M, Teo T, Yu M and
Wang S: Cyclin-dependent kinase 8: A new hope in targeted cancer
therapy? J Med Chem. 61:5073–5092. 2018. View Article : Google Scholar : PubMed/NCBI
|
16
|
McDermott MS, Chumanevich AA, Lim CU,
Liang J, Chen M, Altilia S, Oliver D, Rae JM, Shtutman M, Kiaris H,
et al: Inhibition of CDK8 mediator kinase suppresses estrogen
dependent transcription and the growth of estrogen receptor
positive breast cancer. Oncotarget. 8:12558–12575. 2017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhu M, Yu X, Zheng Z, Huang J, Yang X and
Shi H: Capsaicin suppressed activity of prostate cancer stem cells
by inhibition of Wnt/β-catenin pathway. Phytother Res. 34:817–824.
2020. View
Article : Google Scholar : PubMed/NCBI
|
18
|
Rollyson WD, Stover CA, Brown KC, Perry
HE, Stevenson CD, McNees CA, Ball JG, Valentovic MA and Dasgupta P:
Bioavailability of capsaicin and its implications for drug
delivery. J Control Release. 196:96–105. 2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Linderoth L, Peters GH, Madsen R and
Andresen TL: Drug delivery by an enzyme-mediated cyclization of a
lipid prodrug with unique bilayer-formation properties. Angew Chem
Int Ed Engl. 48:1823–1826. 2009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Shin DH, Kim OH, Jun HS and Kang MK:
Inhibitory effect of capsaicin on B16-F10 melanoma cell migration
via the phosphatidylinositol 3-kinase/Akt/Rac1 signal pathway. Exp
Mol Med. 40:486–494. 2008. View Article : Google Scholar : PubMed/NCBI
|
21
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Menzl I, Witalisz-Siepracka A and Sexl V:
CDK8-Novel therapeutic opportunities. Pharmaceuticals (Basel).
12:922019. View Article : Google Scholar
|
23
|
He L, Lu N, Dai Q, Zhao Y, Zhao L, Wang H,
Li Z, You Q and Guo Q: Wogonin induced G1 cell cycle arrest by
regulating Wnt/β-catenin signaling pathway and inactivating CDK8 in
human colorectal cancer carcinoma cells. Toxicology. 312:36–47.
2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Xu D, Li CF, Zhang X, Gong Z, Chan CH, Lee
SW, Jin G, Rezaeian AH, Han F, Wang J, et al: Skp2-macroH2A1-CDK8
axis orchestrates G2/M transition and tumorigenesis. Nat Commun.
6:66412015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Li K, Pan WT, Ma YB, Xu XL, Gao Y, He YQ,
Wei L and Zhang JW: BMX activates Wnt/β-catenin signaling pathway
to promote cell proliferation and migration in breast cancer.
Breast Cancer. 27:363–371. 2020. View Article : Google Scholar : PubMed/NCBI
|
26
|
Katoh M and Katoh M: WNT signaling pathway
and stem cell signaling network. Clin Cancer Res. 13:4042–4045.
2007. View Article : Google Scholar : PubMed/NCBI
|
27
|
Galbraith MD, Donner AJ and Espinosa JM:
CDK8: A positive regulator of transcription. Transcription. 1:4–12.
2010. View Article : Google Scholar : PubMed/NCBI
|
28
|
Cai WS, Shen F, Feng Z, Chen JW, Liu QC,
Li EM, Xu B and Cao J: Downregulation of CDK-8 inhibits colon
cancer hepatic metastasis by regulating Wnt/β-catenin pathway.
Biomed Pharmacother. 74:153–157. 2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Xu W and Ji JY: Dysregulation of CDK8 and
cyclin C in tumorigenesis. J Genet Genomics. 38:439–452. 2011.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Kapoor A, Goldberg MS, Cumberland LK,
Ratnakumar K, Segura MF, Emanuel PO, Menendez S, Vardabasso C,
Leroy G, Vidal CI, et al: The histone variant macroH2A suppresses
melanoma progression through regulation of CDK8. Nature.
468:1105–1109. 2010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Aggarwal BB, Kunnumakkara AB, Harikumar
KB, Tharakan ST, Sung B and Anand P: Potential of spice-derived
phytochemicals for cancer prevention. Planta Med. 74:1560–1569.
2008. View Article : Google Scholar : PubMed/NCBI
|
32
|
Fattori V, Hohmann MS, Rossaneis AC,
Pinho-Ribeiro FA and Verri WA: Capsaicin: Current understanding of
its mechanisms and therapy of pain and other pre-clinical and
clinical uses. Molecules. 21:8442016. View Article : Google Scholar
|
33
|
Sharma SK, Vij AS and Sharma M: Mechanisms
and clinical uses of capsaicin. Eur J Pharmacol. 720:55–62. 2013.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Bessler H and Djaldetti M: Capsaicin
modulates the immune cross talk between human mononuclears and
cells from two colon carcinoma lines. Nutr Cancer. 69:14–20. 2017.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Zhang JH, Lai FJ, Chen H, Luo J, Zhang RY,
Bu HQ, Wang ZH, Lin HH and Lin SZ: Involvement of the
phosphoinositide 3-kinase/Akt pathway in apoptosis induced by
capsaicin in the human pancreatic cancer cell line PANC-1. Oncol
Lett. 5:43–48. 2013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Chang HC, Chen ST, Chien SY, Kuo SJ, Tsai
HT and Chen DR: Capsaicin may induce breast cancer cell death
through apoptosis-inducing factor involving mitochondrial
dysfunction. Hum Exp Toxicol. 30:1657–1665. 2011. View Article : Google Scholar : PubMed/NCBI
|
37
|
Nazıroğlu M, Çiğ B, Blum W, Vizler C,
Buhala A, Marton A, Katona R, Jósvay K, Schwaller B, Oláh Z and
Pecze L: Targeting breast cancer cells by MRS1477, a positive
allosteric modulator of TRPV1 channels. PLoS One. 12:e01799502017.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Qian K, Wang G, Cao R, Liu T, Qian G, Guan
X, Guo Z, Xiao Y and Wang X: Capsaicin suppresses cell
proliferation, induces cell cycle arrest and ROS production in
bladder cancer cells through FOXO3a-mediated pathways. Molecules.
21:14062016. View Article : Google Scholar
|
39
|
Lin CH, Lu WC, Wang CW, Chan YC and Chen
MK: Capsaicin induces cell cycle arrest and apoptosis in human KB
cancer cells. BMC Complement Altern Med. 13:462013. View Article : Google Scholar : PubMed/NCBI
|
40
|
de-Sá-Júnior PL, Pasqualoto KFM, Ferreira
AK, Tavares MT, Costa Bernstorff Damião MCF, de Azevedo RA, Dias
Câmara DA, Pereira A, de Souza DM and Filho RP: RPF101, a new
capsaicin-like analogue, disrupts the microtubule network
accompanied by arrest in the G2/M phase, inducing apoptosis and
mitotic catastrophe in the MCF-7 breast cancer cells. Toxicol Appl
Pharmacol. 266:385–398. 2013. View Article : Google Scholar : PubMed/NCBI
|
41
|
Sharma VR, Gupta GK and Sharma AK, Batra
N, Sharma DK, Joshi A and Sharma AK: PI3K/Akt/mTOR intracellular
pathway and breast cancer: Factors, mechanism and regulation. Curr
Pharm Des. 23:1633–1638. 2017. View Article : Google Scholar : PubMed/NCBI
|
42
|
Saini KS, Loi S, de Azambuja E,
Metzger-Filho O, Saini ML, Ignatiadis M, Dancey JE and
Piccart-Gebhart MJ: Targeting the PI3K/AKT/mTOR and Raf/MEK/ERK
pathways in the treatment of breast cancer. Cancer Treat Rev.
39:935–946. 2013. View Article : Google Scholar : PubMed/NCBI
|
43
|
Nougarede A, Popgeorgiev N, Kassem L,
Omarjee S, Borel S, Mikaelian I, Lopez J, Gadet R, Marcillat O,
Treilleux I, et al: Breast cancer targeting through inhibition of
the endoplasmic reticulum-based apoptosis regulator Nrh/BCL2L10.
Cancer Res. 78:1404–1417. 2018. View Article : Google Scholar : PubMed/NCBI
|
44
|
Shi L, Wu Z, Miao J, Du S, Ai S, Xu E,
Feng M, Song J and Guan W: Adenosine interaction with adenosine
receptor A2a promotes gastric cancer metastasis by enhancing
PI3K-AKT-mTOR signaling. Mol Biol Cell. 30:2527–2534. 2019.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Ghosh JC, Seo JH, Agarwal E, Wang Y,
Kossenkov AV, Tang HY, Speicher DW and Altieri DC: Akt
phosphorylation of mitochondrial Lonp1 protease enables oxidative
metabolism and advanced tumor traits. Oncogene. 38:6926–6939. 2019.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Guo Y and Pei X: Tetrandrine-induced
autophagy in MDA-MB-231 triple-negative breast cancer cell through
the inhibition of PI3K/AKT/mTOR signaling. Evid Based Complement
Alternat Med. 2019:75174312019. View Article : Google Scholar : PubMed/NCBI
|
47
|
Kleszcz R: The canonical Wnt pathway.
Postepy Biochem. 65:183–192. 2019.(In Polish). View Article : Google Scholar : PubMed/NCBI
|
48
|
Kim MY, Han SI and Lim SC: Roles of
cyclin-dependent kinase 8 and β-catenin in the oncogenesis and
progression of gastric adenocarcinoma. Int J Oncol. 38:1375–1383.
2011.PubMed/NCBI
|
49
|
Firestein R, Shima K, Nosho K, Irahara N,
Baba Y, Bojarski E, Giovannucci EL, Hahn WC, Fuchs CS and Ogino S:
CDK8 expression in 470 colorectal cancers in relation to
beta-catenin activation, other molecular alterations and patient
survival. Int J Cancer. 126:2863–2873. 2010.PubMed/NCBI
|
50
|
Broude EV, Gyorffy B, Chumanevich AA, Chen
M, McDermott MSJ, Shtutman M, Catroppo JF and Roninson IB:
Expression of CDK8 and CDK8-interacting genes as potential
biomarkers in breast cancer. Curr Cancer Drug Targets. 15:739–749.
2015. View Article : Google Scholar : PubMed/NCBI
|