Research advances in molecular mechanisms underlying the pathogenesis of cystic fibrosis: From technical improvement to clinical applications (Review)
- Authors:
- Tao Wei
- Hongshu Sui
- Yanping Su
- Wanjing Cheng
- Yunhua Liu
- Zilin He
- Qingchao Ji
- Changlong Xu
-
Affiliations: Department of Histology and Embryology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, Shandong 271000, P.R. China, Reproductive Medical Center, Nanning Second People's Hospital, Nanning, Guangxi Zhuang Autonomous Region 530031, P.R. China - Published online on: October 16, 2020 https://doi.org/10.3892/mmr.2020.11607
- Pages: 4992-5002
-
Copyright: © Wei et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Klimova B, Kuca K, Novotny M and Maresova P: Cystic fibrosis revisited-a review study. Med Chem. 13:102–109. 2017. View Article : Google Scholar : PubMed/NCBI | |
Brewington JJ, Filbrandt ET, LaRosa FJ III, Ostmann AJ, Strecker LM, Szczesniak RD and Clancy JP: Detection of CFTR function and modulation in primary human nasal cell spheroids. J Cyst Fibros. 17:26–33. 2018. View Article : Google Scholar : PubMed/NCBI | |
Keiser NW, Birket SE, Evans IA, Tyler SR, Crooke AK, Sun X, Zhou W, Nellis JR, Stroebele EK, Chu KK, et al: Defective innate immunity and hyperinflammation in newborn cystic fibrosis transmembrane conductance regulator-knockout ferret lungs. Am J Respir Cell Mol Biol. 52:683–694. 2015. View Article : Google Scholar : PubMed/NCBI | |
Santoro D, Postorino A, Lucanto C, Costa S, Cristadoro S, Pellegrino S, Conti G, Buemi M, Magazzù G and Bellinghieri G: Cystic fibrosis: A risk condition for renal disease. J Ren Nutr. 27:470–473. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dekkers JF, Wiegerinck CL, de Jonge HR, Bronsveld I, Janssens HM, de Winter-de Groot KM, Brandsma AM, de Jong NW, Bijvelds MJ, Scholte BJ, et al: A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat Med. 19:939–945. 2013. View Article : Google Scholar : PubMed/NCBI | |
Harutyunyan M, Huang Y, Mun KS, Yang F, Arora K and Naren AP: Personalized medicine in CF: From modulator development to therapy for cystic fibrosis patients with rare CFTR mutations. Am J Physiol Lung Cell Mol Physiol. 314:L529–L543. 2018. View Article : Google Scholar : PubMed/NCBI | |
Pankow S, Bamberger C, Calzolari D, Martínez-Bartolomé S, Lavallée-Adam M, Balch WE and Yates JR III: ∆F508 CFTR interactome remodelling promotes rescue of cystic fibrosis. Nature. 528:510–516. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gadsby DC, Vergani P and Csanady L: The ABC protein turned chloride channel whose failure causes cystic fibrosis. Nature. 440:477–483. 2006. View Article : Google Scholar : PubMed/NCBI | |
Rommens JM, Iannuzzi MC, Kerem B, Drumm ML, Melmer G, Dean M, Rozmahel R, Cole JL, Kennedy D, Hidaka N, et al: Identification of the cystic fibrosis gene: Chromosome walking and jumping. Science. 245:1059–1065. 1989. View Article : Google Scholar : PubMed/NCBI | |
Saint-Criq V and Gray MA: Role of CFTR in epithelial physiology. Cell Mol Life Sci. 74:93–115. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cuthbert AW: New horizons in the treatment of cystic fibrosis. Br J Pharmacol. 163:173–183. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z and Chen J: Atomic structure of the cystic fibrosis transmembrane conductance regulator. Cell. 167:1586–1597.e9. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xue X, Mutyam V, Thakerar A, Mobley J, Bridges RJ, Rowe SM, Keeling KM and Bedwell DM: Identification of the amino acids inserted during suppression of CFTR nonsense mutations and determination of their functional consequences. Hum Mol Genet. 26:3116–3129. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dodge JA: A millennial view of cystic fibrosis. Dev Period Med. 19:9–13. 2015.PubMed/NCBI | |
Singh M, Rebordosa C, Bernholz J and Sharma N: Epidemiology and genetics of cystic fibrosis in Asia: In preparation for the next-generation treatments. Respirology. 20:1172–1181. 2015. View Article : Google Scholar : PubMed/NCBI | |
Alibakhshi R and Zamani M: Mutation analysis of CFTR gene in 70 Iranian cystic fibrosis patients. Iran J Allergy Asthma Immunol. 5:3–8. 2006.PubMed/NCBI | |
Zeitlin PL: Cystic fibrosis and estrogens: A perfect storm. J Clin Invest. 118:3841–3844. 2008.PubMed/NCBI | |
Lui JK, Kilch J, Fridlyand S, Dheyab A and Bielick Kotkowski C: Non-classic cystic fibrosis: The value in family history. Am J Med. 130:e333–e334. 2017. View Article : Google Scholar : PubMed/NCBI | |
Thomas JM, Durack A, Sterling A, Todd PM and Tomson N: Aquagenic wrinkling of the palms: A diagnostic clue to cystic fibrosis carrier status and non-classic disease. Lancet. 389:8462017. View Article : Google Scholar : PubMed/NCBI | |
Severiche-Bueno D, Gamboa E, Reyes LF and Chotirmall SH: Hot topics and current controversies in non-cystic fibrosis bronchiectasis. Breathe (Sheff). 15:286–295. 2019. View Article : Google Scholar : PubMed/NCBI | |
Andersen DH: Cystic fibrosis of the pancreas and its relation to celiac disease. Am J Dis Child. 56:1938. View Article : Google Scholar | |
Bell SC, Mall MA, Gutierrez H, Macek M, Madge S, Davies JC, Burgel PR, Tullis E, Castaños C, Castellani C, et al: The future of cystic fibrosis care: A global perspective. Lancet Respir Med. 8:65–124. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gibson LE and Cooke RE: A test for concentration of electrolytes in sweat in cystic fibrosis of the pancreas utilizing pilocarpine by iontophoresis. Pediatrics. 23:545–549. 1959.PubMed/NCBI | |
Di Sant'agnese PA, Darling RC, Perera GA and Shea E: Abnormal electrolyte composition of sweat in cystic fibrosis of the pancreas; clinical significance and relationship to the disease. Pediatrics. 12:549–563. 1953.PubMed/NCBI | |
Davis PB: Cystic fibrosis since 1938. Am J Respir Crit Care Med. 173:475–482. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yamada A, Komaki Y, Komaki F, Micic D, Zullow S and Sakuraba A: Risk of gastrointestinal cancers in patients with cystic fibrosis: A systematic review and meta-analysis. Lancet Oncol. 19:758–767. 2018. View Article : Google Scholar : PubMed/NCBI | |
Goetz D and Ren CL: Review of cystic fibrosis. Pediatr Ann. 48:e154–e161. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fanen P, Wohlhuter-Haddad A and Hinzpeter A: Genetics of cystic fibrosis: CFTR mutation classifications toward genotype-based CF therapies. Int J Biochem Cell Biol. 52:94–102. 2014. View Article : Google Scholar : PubMed/NCBI | |
Linsdell P: Cystic fibrosis transmembrane conductance regulator (CFTR): Making an ion channel out of an active transporter structure. Channels (Austin). 12:284–290. 2018. View Article : Google Scholar : PubMed/NCBI | |
Moran O: The gating of the CFTR channel. Cell Mol Life Sci. 74:85–92. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mall MA and Galietta LJ: Targeting ion channels in cystic fibrosis. J Cyst Fibros. 14:561–570. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gentzsch M and Mall MA: Ion channel modulators in cystic fibrosis. Chest. 154:383–393. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shah VS, Meyerholz DK, Tang XX, Reznikov L, Abou Alaiwa M, Ernst SE, Karp PH, Wohlford-Lenane CL, Heilmann KP, Leidinger MR, et al: Airway acidification initiates host defense abnormalities in cystic fibrosis mice. Science. 351:503–507. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu F, Zhang Z, Csanády L, Gadsby DC and Chen J: Molecular structure of the human CFTR ion channel. Cell. 169:85–95.e8. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cook DP, Rector MV, Bouzek DC, Michalski AS, Gansemer ND, Reznikov LR, Li X, Stroik MR, Ostedgaard LS, Abou Alaiwa MH, et al: Cystic fibrosis transmembrane conductance regulator in sarcoplasmic reticulum of airway smooth muscle. Implications for airway contractility. Am J Respir Crit Care Med. 193:417–426. 2016. View Article : Google Scholar : PubMed/NCBI | |
Iitiä A, Høgdall E, Dahlen P, Hurskainen P, Vuust J and Siitari H: Detection of mutation delta F508 in the cystic fibrosis gene using allele-specific PCR primers and time-resolved fluorometry. PCR Methods Appl. 2:157–162. 1992. View Article : Google Scholar : PubMed/NCBI | |
Xia E, Zhang Y, Cao H, Li J, Duan R and Hu J: TALEN-mediated gene targeting for cystic fibrosis-gene therapy. Genes (Basel). 10:392019. View Article : Google Scholar | |
Costa C, Pruliere-Escabasse V, de Becdelievre A, Gameiro C, Golmard L, Guittard C, Bassinet L, Bienvenu T, Georges MD, Epaud R, et al: A recurrent deep-intronic splicing CF mutation emphasizes the importance of mRNA studies in clinical practice. J Cyst Fibros. 10:479–482. 2011. View Article : Google Scholar : PubMed/NCBI | |
Brandt C, Roehmel J, Rickerts V, Melichar V, Niemann N and Schwarz C: Aspergillus bronchitis in patients with cystic fibrosis. Mycopathologia. 183:61–69. 2018. View Article : Google Scholar : PubMed/NCBI | |
Strom CM, Ginsberg N, Rechitsky S, Cieslak J, Ivakhenko V, Wolf G, Lifchez A, Moise J, Valle J, Kaplan B, et al: Three births after preimplantation genetic diagnosis for cystic fibrosis with sequential first and second polar body analysis. Am J Obstet Gynecol. 178:1298–1306. 1998. View Article : Google Scholar : PubMed/NCBI | |
Girardet A, Viart V, Plaza S, Daina G, De Rycke M, Des Georges M, Fiorentino F, Harton G, Ishmukhametova A, Navarro J, et al: The improvement of the best practice guidelines for preimplantation genetic diagnosis of cystic fibrosis: Toward an international consensus. Eur J Hum Genet. 24:469–478. 2016. View Article : Google Scholar : PubMed/NCBI | |
Brennan ML and Schrijver I: Cystic fibrosis: A review of associated phenotypes, use of molecular diagnostic approaches, genetic characteristics, progress, and dilemmas. J Mol Diagn. 18:3–14. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bell CJ, Dinwiddie DL, Miller NA, Hateley SL, Ganusova EE, Mudge J, Langley RJ, Zhang L, Lee CC, Schilkey FD, et al: Carrier testing for severe childhood recessive diseases by next-generation sequencing. Sci Transl Med. 3:65ra42011. View Article : Google Scholar : PubMed/NCBI | |
Rengaraju B, Thana K, La A, Pavithra K, Durairaj V, Challapalli SH and Das A: Inquest of the SNP in cystic fibrosis-A bioinformatic approach. Int J Curr Microbiol Appl Sci. 6:1255–1263. 2017. View Article : Google Scholar | |
Beauchamp KA, Johansen Taber KA, Grauman PV, Spurka L, Lim-Harashima J, Svenson A, Goldberg JD and Muzzey D: Sequencing as a first-line methodology for cystic fibrosis carrier screening. Genet Med. 21:2569–2576. 2019. View Article : Google Scholar : PubMed/NCBI | |
Baker MW, Atkins AE, Cordovado SK, Hendrix M, Earley MC and Farrell PM: Improving newborn screening for cystic fibrosis using next-generation sequencing technology: A technical feasibility study. Genet Med. 18:231–238. 2016. View Article : Google Scholar : PubMed/NCBI | |
Marangi M and Pistritto G: Innovative therapeutic strategies for cystic fibrosis: Moving forward to CRISPR technique. Front Pharmacol. 9:3962018. View Article : Google Scholar : PubMed/NCBI | |
Hodges CA and Conlon RA: Delivering on the promise of gene editing for cystic fibrosis. Genes Dis. 6:97–108. 2019. View Article : Google Scholar : PubMed/NCBI | |
Park S and Beal PA: Off-target editing by CRISPR-guided DNA base editors. Biochemistry. 58:3727–3734. 2019. View Article : Google Scholar : PubMed/NCBI | |
Schwank G, Koo BK, Sasselli V, Dekkers JF, Heo I, Demircan T, Sasaki N, Boymans S, Cuppen E, van der Ent CK, et al: Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell. 13:653–658. 2013. View Article : Google Scholar : PubMed/NCBI | |
Crane AM, Kramer P, Bui JH, Chung WJ, Li XS, Gonzalez-Garay ML, Hawkins F, Liao W, Mora D, Choi S, et al: Targeted correction and restored function of the CFTR gene in cystic fibrosis induced pluripotent stem cells. Stem Cell Reports. 4:569–577. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liang P, Xu Y, Zhang X, Ding C, Huang R, Zhang Z, Lv J, Xie X, Chen Y, Li Y, et al: CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell. 6:363–372. 2015. View Article : Google Scholar : PubMed/NCBI | |
Saayman SM, Ackley A, Burdach J, Clemson M, Gruenert DC, Tachikawa K, Chivukula P, Weinberg MS and Morris KV: Long non-coding RNA BGas regulates the cystic fibrosis transmembrane conductance regulator. Mol Ther. 24:1351–1357. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dimartino D, Colantoni A, Ballarino M, Martone J, Mariani D, Danner J, Bruckmann A, Meister G, Morlando M and Bozzoni I: The long non-coding RNA lnc-31 interacts with Rock1 mRNA and mediates its YB-1-dependent translation. Cell Rep. 23:733–740. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kishore S and Stamm S: The snoRNA HBII-52 regulates alternative splicing of the serotonin receptor 2C. Science. 311:230–232. 2006. View Article : Google Scholar : PubMed/NCBI | |
Gil N and Ulitsky I: Regulation of gene expression by cis-acting long non-coding RNAs. Nat Rev Genet. 21:102–117. 2020. View Article : Google Scholar : PubMed/NCBI | |
Fabbri E, Tamanini A, Jakova T, Gasparello J, Manicardi A, Corradini R, Sabbioni G, Finotti A, Borgatti M, Lampronti I, et al: A peptide nucleic acid against MicroRNA miR-145-5p enhances the expression of the cystic fibrosis transmembrane conductance regulator (CFTR) in Calu-3 cells. Molecules. 23:712017. View Article : Google Scholar | |
Megiorni F, Cialfi S, Dominici C, Quattrucci S and Pizzuti A: Synergistic post-transcriptional regulation of the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) by miR-101 and miR-494 specific binding. PLoS One. 6:e266012011. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Yao JN, Huang WT, He RQ, Ma J, Chen G and Wei QJ: Expression of miR-542-3p in osteosarcoma with miRNA microarray data, and its potential signaling pathways. Mol Med Rep. 19:974–983. 2019.PubMed/NCBI | |
Hassan F, Nuovo GJ, Crawford M, Boyaka PN, Kirkby S, Nana-Sinkam SP and Cormet-Boyaka E: MiR-101 and miR-144 regulate the expression of the CFTR chloride channel in the lung. PLoS One. 7:e508372012. View Article : Google Scholar : PubMed/NCBI | |
Ramachandran S, Karp PH, Jiang P, Ostedgaard LS, Walz AE, Fisher JT, Keshavjee S, Lennox KA, Jacobi AM, Rose SD, et al: A microRNA network regulates expression and biosynthesis of wild-type and DeltaF508 mutant cystic fibrosis transmembrane conductance regulator. Proc Natl Acad Sci USA. 109:13362–13367. 2012. View Article : Google Scholar : PubMed/NCBI | |
Fesen K, Silveyra P, Fuentes N, Nicoleau M, Rivera L, Kitch D, Graff GR and Siddaiah R: The role of microRNAs in chronic pseudomonas lung infection in Cystic fibrosis. Respir Med. 151:133–138. 2019. View Article : Google Scholar : PubMed/NCBI | |
Balloy V, Koshy R, Perra L, Corvol H, Chignard M, Guillot L and Scaria V: Bronchial epithelial cells from cystic fibrosis patients express a specific long non-coding RNA signature upon Pseudomonas aeruginosa infection. Front Cell Infect Microbiol. 7:2182017. View Article : Google Scholar : PubMed/NCBI | |
McKiernan PJ, Molloy K, Cryan SA, McElvaney NG and Greene CM: Long noncoding RNA are aberrantly expressed in vivo in the cystic fibrosis bronchial epithelium. Int J Biochem Cell Biol. 52:184–191. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kumar P, Sen C, Peters K, Frizzell RA and Biswas R: Comparative analyses of long non-coding RNA profiles in vivo in cystic fibrosis lung airway and parenchyma tissues. Respir Res. 20:2842019. View Article : Google Scholar : PubMed/NCBI | |
McKiernan PJ, Cunningham O, Greene CM and Cryan SA: Targeting miRNA-based medicines to cystic fibrosis airway epithelial cells using nanotechnology. Int J Nanomed. 8:3907–3915. 2013. | |
Lu Q, Liu T, Feng H, Yang R, Zhao X, Chen W, Jiang B, Qin H, Guo X, Liu M, et al: Circular RNA circSLC8A1 acts as a sponge of miR-130b/miR-494 in suppressing bladder cancer progression via regulating PTEN. Mol Cancer. 18:1112019. View Article : Google Scholar : PubMed/NCBI | |
Yu CY, Li TC, Wu YY, Yeh CH, Chiang W, Chuang CY and Kuo HC: The circular RNA circBIRC6 participates in the molecular circuitry controlling human pluripotency. Nat Commun. 8:11492017. View Article : Google Scholar : PubMed/NCBI | |
Nowacka-Zawisza M and Wiśnik E: DNA methylation and histone modifications as epigenetic regulation in prostate cancer (Review). Oncol Rep. 38:2587–2596. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sirinupong N and Yang Z: Epigenetics in cystic fibrosis: Epigenetic targeting of a genetic disease. Curr Drug Targets. 16:976–987. 2015. View Article : Google Scholar : PubMed/NCBI | |
Morandini AC, Santos CF and Yilmaz Ö: Role of epigenetics in modulation of immune response at the junction of host-pathogen interaction and danger molecule signaling. Pathog Dis. 74:ftw0822016. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Armstrong DA, Salas LA, Hazlett HF, Nymon AB, Dessaint JA, Aridgides DS, Mellinger DL, Liu X, Christensen BC and Ashare A: Genome-wide DNA methylation profiling shows a distinct epigenetic signature associated with lung macrophages in cystic fibrosis. Clin Epigenetics. 10:1522018. View Article : Google Scholar : PubMed/NCBI | |
Magalhães M, Tost J, Pineau F, Rivals I, Busato F, Alary N, Mely L, Leroy S, Murris M, Caimmi D, et al: Dynamic changes of DNA methylation and lung disease in cystic fibrosis: Lessons from a monogenic disease. Epigenomics. 10:1131–1145. 2018. View Article : Google Scholar : PubMed/NCBI | |
Scott M and De Sario A: DNA methylation changes in cystic fibrosis: Cause or consequence? Clin Genet. 98:3–9. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hutt DM, Herman D, Rodrigues AP, Noel S, Pilewski JM, Matteson J, Hoch B, Kellner W, Kelly JW, Schmidt A, et al: Reduced histone deacetylase 7 activity restores function to misfolded CFTR in cystic fibrosis. Nat Chem Biol. 6:25–33. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bartling TR and Drumm ML: Loss of CFTR results in reduction of histone deacetylase 2 in airway epithelial cells. Am J Physiol Lung Cell Mol Physiol. 297:L35–L43. 2009. View Article : Google Scholar : PubMed/NCBI | |
Rymut SM, Harker A, Corey DA, Burgess JD, Sun H, Clancy JP and Kelley TJ: Reduced microtubule acetylation in cystic fibrosis epithelial cells. Am J Physiol Lung Cell Mol Physiol. 305:L419–L431. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bergougnoux A, Rivals I, Liquori A, Raynal C, Varilh J, Magalhães M, Perez MJ, Bigi N, Des Georges M, Chiron R, et al: A balance between activating and repressive histone modifications regulates cystic fibrosis transmembrane conductance regulator (CFTR) expression in vivo. Epigenetics. 9:1007–1017. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cutting GR: Cystic fibrosis genetics: From molecular understanding to clinical application. Nat Rev Genet. 16:45–56. 2015. View Article : Google Scholar : PubMed/NCBI | |
Davis PB, Drumm M and Konstan MW: Cystic fibrosis. Am J Respir Crit Care Med. 154:1229–1256. 1996. View Article : Google Scholar : PubMed/NCBI | |
De Boeck K, Vermeulen F and Dupont L: The diagnosis of cystic fibrosis. Presse Med. 46:e97–e108. 2017. View Article : Google Scholar : PubMed/NCBI | |
Schwarzenberg SJ, Hempstead SE, McDonald CM, Powers SW, Wooldridge J, Blair S, Freedman S, Harrington E, Murphy PJ, Palmer L, et al: Enteral tube feeding for individuals with cystic fibrosis: Cystic Fibrosis Foundation evidence-informed guidelines. J Cyst Fibros. 15:724–735. 2016. View Article : Google Scholar : PubMed/NCBI | |
Guglani L, Moir D and Jain A: Sweat chloride concentrations in children with Idiopathic Nephrotic Syndrome. Pediatr Pulmonol. 51:49–52. 2016. View Article : Google Scholar : PubMed/NCBI | |
Brown A, Jenkins L, Reid A, Leavy A, McDowell G, McIlroy C, Thompson A and McNaughten B: How to perform and interpret the sweat test. Arch Dis Child Educ Pract Ed. 105:230–235. 2019. View Article : Google Scholar : PubMed/NCBI | |
Solomon GM, Liu B, Sermet-Gaudelus I, Fajac I, Wilschanski M, Vermeulen F and Rowe SM: A multiple reader scoring system for Nasal Potential Difference parameters. J Cyst Fibros. 16:573–578. 2017. View Article : Google Scholar : PubMed/NCBI | |
Solomon GM, Bronsveld I, Hayes K, Wilschanski M, Melotti P, Rowe SM and Sermet-Gaudelus I: Standardized measurement of nasal membrane transepithelial potential difference (NPD). J Vis Exp. 570062018. | |
Beka M and Leal T: Nasal potential difference to quantify trans-epithelial ion transport in mice. J Vis Exp. 579342018. | |
Old RW, Bestwick JP and Wald NJ: Prenatal maternal plasma DNA screening for cystic fibrosis: A computer modelling study of screening performance. F1000Res. 6:18962017. View Article : Google Scholar : PubMed/NCBI | |
Sugunaraj JP, Brosius HM, Murray MF, Manickam K, Stamm JA, Carey DJ and Mirshahi UL: Predictive value of genomic screening: Cross-sectional study of cystic fibrosis in 50,788 electronic health records. NPJ Genom Med. 4:212019. View Article : Google Scholar : PubMed/NCBI | |
Ferlin A and Stuppia L: Diagnostics of CFTR-negative patients with congenital bilateral absence of vas deferens: Which mutations are of most interest? Expert Rev Mol Diagn. 20:265–267. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wagener JS, Sontag MK and Accurso FJ: Newborn screening for cystic fibrosis. Curr Opin Pediatr. 15:309–315. 2003. View Article : Google Scholar : PubMed/NCBI | |
O'Brien TJ and Welch M: Recapitulation of polymicrobial communities associated with cystic fibrosis airway infections: A perspective. Future Microbiol. 14:1437–1450. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lyczak JB, Cannon CL and Pier GB: Lung infections associated with cystic fibrosis. Clin Microbiol Rev. 15:194–222. 2002. View Article : Google Scholar : PubMed/NCBI | |
Savant AP and McColley SA: Cystic fibrosis year in review 2016. Pediatr Pulmonol. 52:1092–1102. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wilson J: Treating genes and patients. Gene Ther. 27:109–110. 2020. View Article : Google Scholar : PubMed/NCBI | |
Rafeeq MM and Murad HAS: Cystic fibrosis: Current therapeutic targets and future approaches. J Transl Med. 15:842017. View Article : Google Scholar : PubMed/NCBI | |
Moss RB, Flume PA, Elborn JS, Cooke J, Rowe SM, McColley SA, Rubenstein RC and Higgins M; VX11-770-110 (KONDUCT) Study Group, : Efficacy and safety of ivacaftor in patients with cystic fibrosis who have an Arg117His-CFTR mutation: A double-blind, randomised controlled trial. Lancet Respir Med. 3:524–533. 2015. View Article : Google Scholar : PubMed/NCBI | |
Arjmand B, Larijani B, Sheikh Hosseini M, Payab M, Gilany K, Goodarzi P, Parhizkar Roudsari P, Amanollahi Baharvand M and Hoseini Mohammadi NS: The horizon of gene therapy in modern medicine: Advances and challenges. Adv Exp Med Biol. 1247:33–64. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yang Q, Soltis AR, Sukumar G, Zhang X, Caohuy H, Freedy J, Dalgard CL, Wilkerson MD, Pollard HB and Pollard BS: Gene therapy-emulating small molecule treatments in cystic fibrosis airway epithelial cells and patients. Respir Res. 20:2902019. View Article : Google Scholar : PubMed/NCBI | |
Eymery M, Morfin F, Doleans-Jordheim A, Perceval M, Ohlmann C, Mainguy C and Reix P: Viral respiratory tract infections in young children with cystic fibrosis: A prospective full-year seasonal study. Virol J. 16:1112019. View Article : Google Scholar : PubMed/NCBI | |
Tümmler B: Treatment of cystic fibrosis with CFTR modulators. Pneumologie. 70:301–313. 2016.(In German). PubMed/NCBI | |
Bessonova L, Volkova N, Higgins M, Bengtsson L, Tian S, Simard C, Konstan MW, Sawicki GS, Sewall A, Nyangoma S, et al: Data from the US and UK cystic fibrosis registries support disease modification by CFTR modulation with ivacaftor. Thorax. 73:731–740. 2018. View Article : Google Scholar : PubMed/NCBI | |
Faruqi S, Shiferaw D and Morice AH: Effect of ivacaftor on objective and subjective measures of cough in patients with cystic fibrosis. Open Respir Med J. 10:105–108. 2016. View Article : Google Scholar : PubMed/NCBI | |
Heltshe SL, Mayer-Hamblett N, Burns JL, Khan U, Baines A, Ramsey BW and Rowe SM; GOAL (the G551D Observation-AL) Investigators of the Cystic Fibrosis Foundation Therapeutics Development Network, : Pseudomonas aeruginosa in cystic fibrosis patients with G551D-CFTR treated with ivacaftor. Clin Infect Dis. 60:703–712. 2015. View Article : Google Scholar : PubMed/NCBI | |
Krainer G, Schenkel M, Hartmann A, Ravamehr-Lake D, Deber CM and Schlierf M: CFTR transmembrane segments are impaired in their conformational adaptability by a pathogenic loop mutation and dynamically stabilized by Lumacaftor. J Biol Chem. 295:1985–1991. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wainwright CE, Elborn JS and Ramsey BW: Lumacaftor-ivacaftor in patients with cystic fibrosis homozygous for Phe508del CFTR. N Engl J Med. 373:1783–1784. 2015. View Article : Google Scholar : PubMed/NCBI | |
Konstan MW, McKone EF, Moss RB, Marigowda G, Tian S, Waltz D, Huang X, Lubarsky B, Rubin J, Millar SJ, et al: Assessment of safety and efficacy of long-term treatment with combination lumacaftor and ivacaftor therapy in patients with cystic fibrosis homozygous for the F508del-CFTR mutation (PROGRESS): A phase 3, extension study. Lancet Respir Med. 5:107–118. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sala MA and Jain M: Tezacaftor for the treatment of cystic fibrosis. Expert Rev Respir Med. 12:725–732. 2018. View Article : Google Scholar : PubMed/NCBI | |
Rowe SM, Daines C, Ringshausen FC, Kerem E, Wilson J, Tullis E, Nair N, Simard C, Han L, Ingenito EP, et al: Tezacaftor-ivacaftor in residual-function heterozygotes with cystic fibrosis. N Engl J Med. 377:2024–2035. 2017. View Article : Google Scholar : PubMed/NCBI | |
Donaldson SH, Pilewski JM, Griese M, Cooke J, Viswanathan L, Tullis E, Davies JC, Lekstrom-Himes JA and Wang LT; VX11-661-101 Study Group, : Tezacaftor/ivacaftor in subjects with cystic fibrosis and F508del/F508del-CFTR or F508del/G551D-CFTR. Am J Respir Crit Care Med. 197:214–224. 2018. View Article : Google Scholar : PubMed/NCBI | |
Taylor-Cousar JL, Munck A, McKone EF, van der Ent CK, Moeller A, Simard C, Wang LT, Ingenito EP, McKee C, Lu Y, et al: Tezacaftor-Ivacaftor in Patients with Cystic Fibrosis Homozygous for Phe508del. N Engl J Med. 377:2013–2023. 2017. View Article : Google Scholar : PubMed/NCBI | |
Giuliano KA, Wachi S, Drew L, Dukovski D, Green O, Bastos C, Cullen MD, Hauck S, Tait BD, Munoz B, et al: Use of a high-throughput phenotypic screening strategy to identify amplifiers, a novel pharmacological class of small molecules that exhibit functional synergy with potentiators and correctors. SLAS Discov. 23:111–121. 2018.PubMed/NCBI | |
Gambari R, Breveglieri G, Salvatori F, Finotti A and Borgatti M: Therapy for cystic fibrosis caused by nonsense mutations. Cystic Fibrosis in the Light of New Research Ch. 13:2015. View Article : Google Scholar | |
Wang G: Interplay between inhibitory ferric and stimulatory curcumin regulates phosphorylation-dependent human cystic fibrosis transmembrane conductance regulator and DeltaF508 activity. Biochemistry. 54:1558–1566. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chaudary N: Triplet CFTR modulators: Future prospects for treatment of cystic fibrosis. Ther Clin Risk Manag. 14:2375–2383. 2018. View Article : Google Scholar : PubMed/NCBI | |
Raynal C, Baux D, Theze C, Bareil C, Taulan M, Roux AF, Claustres M, Tuffery-Giraud S and des Georges M: A classification model relative to splicing for variants of unknown clinical significance: Application to the CFTR gene. Hum Mutat. 34:774–784. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mention K, Santos L and Harrison PT: Gene and base editing as a therapeutic option for cystic fibrosis-learning from other diseases. Genes (Basel). 10:3872019. View Article : Google Scholar | |
Osman G, Rodriguez J, Chan SY, Chisholm J, Duncan G, Kim N, Tatler AL, Shakesheff KM, Hanes J, Suk JS and Dixon JE: PEGylated enhanced cell penetrating peptide nanoparticles for lung gene therapy. J Control Release. 285:35–45. 2018. View Article : Google Scholar : PubMed/NCBI | |
Condren ME and Bradshaw MD: Ivacaftor: A novel gene-based therapeutic approach for cystic fibrosis. J Pediatr Pharmacol Ther. 18:8–13. 2013.PubMed/NCBI |