1
|
Fan CS, Chen LL, Hsu TA, Chen CC, Chua KV,
Li CP and Huang TS: Endothelial-mesenchymal transition harnesses
HSP90α-secreting M2-macrophages to exacerbate pancreatic ductal
adenocarcinoma. J Hematol Oncol. 12:1382019. View Article : Google Scholar : PubMed/NCBI
|
2
|
Erickson LA: Pancreatic ductal
adenocarcinoma. Mayo Clin Proc. 92:1461–1462. 2017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Li JT, Wang YP, Yin M and Lei QY:
Metabolism remodeling in pancreatic ductal adenocarcinoma. Cell
Stress. 3:361–368. 2019. View Article : Google Scholar : PubMed/NCBI
|
4
|
Ayres Pereira M and Chio IC: Metastasis in
pancreatic ductal adenocarcinoma: Current standing and
methodologies. Genes (Basel). 11:112019. View Article : Google Scholar
|
5
|
Li B, Liu B, Zhang X, Liu H and He L:
KIF18B promotes the proliferation of pancreatic ductal
adenocarcinoma via activating the expression of CDCA8. J Cell
Physiol. 235:4227–4238. 2020. View Article : Google Scholar : PubMed/NCBI
|
6
|
Oh KH, Choi J, Woo JS, Baek SK, Jung KY,
Koh MJ, Kim YS and Kwon SY: Role of laminin 332 in lymph node
metastasis of papillary thyroid carcinoma. Auris Nasus Larynx.
44:729–734. 2017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Kang SG, Ha YR, Ko YH, Kang SH, Joo KJ,
Cho HY, Park HS, Kim CH, Kwon SY, Kim JJ, et al: Effect of laminin
332 on motility and invasion in bladder cancer. Kaohsiung J Med
Sci. 29:422–429. 2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Carpenter PM, Sivadas P, Hua SS, Xiao C,
Gutierrez AB, Ngo T and Gershon PD: Migration of breast cancer cell
lines in response to pulmonary laminin 332. Cancer Med. 6:220–234.
2017. View
Article : Google Scholar : PubMed/NCBI
|
9
|
Chiorean R, Danescu S, Virtic O, Mustafa
MB, Baican A, Lischka A, Hashimoto T, Kariya Y, Koch M and Sitaru
C: Molecular diagnosis of anti-laminin 332 (epiligrin) mucous
membrane pemphigoid. Orphanet J Rare Dis. 13:1112018. View Article : Google Scholar : PubMed/NCBI
|
10
|
Rousselle P and Beck K: Laminin 332
processing impacts cellular behavior. Cell Adhes Migr. 7:122–134.
2013. View Article : Google Scholar
|
11
|
Carpenter PM, Ziogas A, Markham EM,
Cantillep AS, Yan R and Anton-Culver H: Laminin 332 expression and
prognosis in breast cancer. Hum Pathol. 82:289–296. 2018.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Lamouille S, Xu J and Derynck R: Molecular
mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell
Biol. 15:178–196. 2014. View
Article : Google Scholar : PubMed/NCBI
|
13
|
De Craene B and Berx G: Regulatory
networks defining EMT during cancer initiation and progression. Nat
Rev Cancer. 13:97–110. 2013. View
Article : Google Scholar : PubMed/NCBI
|
14
|
Wrighton KH: Cell migration: EMT promotes
contact inhibition of locomotion. Nat Rev Mol Cell Biol.
16:5182015. View
Article : Google Scholar : PubMed/NCBI
|
15
|
Lee J, Choi JH and Joo CK: TGF-β1
regulates cell fate during epithelial-mesenchymal transition by
upregulating survivin. Cell Death Dis. 4:e7142013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Kenda Suster N, Smrkolj S and Virant-Klun
I: Putative stem cells and epithelial-mesenchymal transition
revealed in sections of ovarian tumor in patients with serous
ovarian carcinoma using immunohistochemistry for vimentin and
pluripotency-related markers. J Ovarian Res. 10:112017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Chen J, Zhang H, Luo J, Wu X, Li X, Zhao
X, Zhou D and Yu S: Overexpression of α3, β3 and γ2 chains of
laminin-332 is associated with poor prognosis in pancreatic ductal
adenocarcinoma. Oncol Lett. 16:199–210. 2018.PubMed/NCBI
|
18
|
Murakami S, Shahbazian D, Surana R, Zhang
W, Chen H, Graham GT, White SM, Weiner LM and Yi C: Yes-associated
protein mediates immune reprogramming in pancreatic ductal
adenocarcinoma. Oncogene. 36:1232–1244. 2017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Pandey R, Zhou M, Islam S, Chen B, Barker
NK, Langlais P, Srivastava A, Luo M, Cooke LS, Weterings E, et al:
Carcinoembryonic antigen cell adhesion molecule 6 (CEACAM6) in
Pancreatic Ductal Adenocarcinoma (PDA): An integrative analysis of
a novel therapeutic target. Sci Rep. 9:183472019. View Article : Google Scholar : PubMed/NCBI
|
20
|
Chen J, Wang W, Wei J, Zhou D, Zhao X,
Song W, Sun Q, Huang P and Zheng S: Overexpression of β3 chains of
laminin-332 is associated with clinicopathologic features and
decreased survival in patients with pancreatic adenocarcinoma. Appl
Immunohistochem Mol Morphol. 23:516–521. 2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Gupta R, Amanam I and Chung V: Current and
future therapies for advanced pancreatic cancer. J Surg Oncol.
116:25–34. 2017. View Article : Google Scholar : PubMed/NCBI
|
22
|
Kligys K, Wu Y, Hamill KJ, Lewandowski KT,
Hopkinson SB, Budinger GR and Jones JC: Laminin-332 and α3β1
integrin-supported migration of bronchial epithelial cells is
modulated by fibronectin. Am J Respir Cell Mol Biol. 49:731–740.
2013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Erdogan B and Webb DJ: Cancer-associated
fibroblasts modulate growth factor signaling and extracellular
matrix remodeling to regulate tumor metastasis. Biochem Soc Trans.
45:229–236. 2017. View Article : Google Scholar : PubMed/NCBI
|
24
|
Lugano R, Vemuri K, Yu D, Bergqvist M,
Smits A, Essand M, Johansson S, Dejana E and Dimberg A: CD93
promotes β1 integrin activation and fibronectin fibrillogenesis
during tumor angiogenesis. J Clin Invest. 128:3280–3297. 2018.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Kamoshida G, Ogawa T, Oyanagi J, Sato H,
Komiya E, Higashi S, Miyazaki K and Tsuji T: Modulation of matrix
metalloproteinase-9 secretion from tumor-associated macrophage-like
cells by proteolytically processed laminin-332 (laminin-5). Clin
Exp Metastasis. 31:285–291. 2014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Kariya Y, Sato H, Katou N, Kariya Y and
Miyazaki K: Polymerized laminin-332 matrix supports rapid and tight
adhesion of keratinocytes, suppressing cell migration. PLoS One.
7:e355462012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Guess CM and Quaranta V: Defining the role
of laminin-332 in carcinoma. Matrix Biol. 28:445–455. 2009.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Zhang J, Wang H, Wang Y, Dong W, Jiang Z
and Yang G: Substrate-mediated gene transduction of LAMA3 for
promoting biological sealing between titanium surface and gingival
epithelium. Colloids Surf B Biointerfaces. 161:314–323. 2018.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Fuentes I, Campos M, Repetto G, Morandé P,
Yubero MJ, Gonzalez S, Klausegger A, Schnitzhofer P, Pohla-Gubo G,
Bauer J, et al: Molecular epidemiology of junctional epidermolysis
bullosa: Discovery of novel and frequent LAMB3 mutations in Chilean
patients with diagnostic significance. Br J Dermatol.
176:1090–1092. 2017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Mayer B, Silló P, Mazán M, Pintér D,
Medvecz M, Has C, Castiglia D, Petit F, Charlesworth A, Hatvani Z,
et al: A unique LAMB3 splice-site mutation with founder effect from
the Balkans causes lethal epidermolysis bullosa in several European
countries. Br J Dermatol. 175:721–727. 2016. View Article : Google Scholar : PubMed/NCBI
|
31
|
Calaluce R, Bearss DJ, Barrera J, Zhao Y,
Han H, Beck SK, McDaniel K and Nagle RB: Laminin-5 beta3A
expression in LNCaP human prostate carcinoma cells increases cell
migration and tumorigenicity. Neoplasia. 6:468–479. 2004.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Jung SN, Lim HS, Liu L, Chang JW, Lim YC,
Rha KS and Koo BS: LAMB3 mediates metastatic tumor behavior in
papillary thyroid cancer by regulating c-MET/Akt signals. Sci Rep.
8:27182018. View Article : Google Scholar : PubMed/NCBI
|
33
|
Zhang H, Pan YZ, Cheung M, Cao M, Yu C,
Chen L, Zhan L, He ZW and Sun CY: LAMB3 mediates apoptotic,
proliferative, invasive, and metastatic behaviors in pancreatic
cancer by regulating the PI3K/Akt signaling pathway. Cell Death
Dis. 10:2302019. View Article : Google Scholar : PubMed/NCBI
|
34
|
Kobayashi T, Masaki T, Nozaki E, Sugiyama
M, Nagashima F, Furuse J, Onishi H, Watanabe T and Ohkura Y:
Microarray analysis of gene expression at the tumor front of colon
cancer. Anticancer Res. 35:6577–6581. 2015.PubMed/NCBI
|
35
|
Moon YW, Rao G, Kim JJ, Shim HS, Park KS,
An SS, Kim B, Steeg PS, Sarfaraz S, Changwoo Lee L, et al: LAMC2
enhances the metastatic potential of lung adenocarcinoma. Cell
Death Differ. 22:1341–1352. 2015. View Article : Google Scholar : PubMed/NCBI
|
36
|
Sato H, Higashi S and Miyazaki K:
Amino-terminal fragments of laminin γ2 chain stimulate migration of
metastatic breast cancer cells by interacting with CD44. Clin Exp
Metastasis. 32:405–415. 2015. View Article : Google Scholar : PubMed/NCBI
|
37
|
Crha K, Ventruba P, Žáková J, Ješeta M,
Pilka R, Vodička J and Serpa P: The role of mesenchymal-epithelial
transition in endometrial function and receptivity. Ceska Gynekol.
84:371–375. 2019.PubMed/NCBI
|
38
|
Kar R, Jha NK, Jha SK, Sharma A, Dholpuria
S, Asthana N, Chaurasiya K, Singh VK, Burgee S and Nand P: A
‘NOTCH’ deeper into the epithelial-to-mesenchymal transition (EMT)
program in breast cancer. Genes (Basel). 10:102019. View Article : Google Scholar
|
39
|
Peng YS, Syu JP, Wang SD, Pan PC and Kung
HN: BSA-bounded p-cresyl sulfate potentiates the malignancy of
bladder carcinoma by triggering cell migration and EMT through the
ROS/Src/FAK signaling pathway. Cell Biol Toxicol. 36:287–300. 2020.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Hanrahan K, O'Neill A, Prencipe M, Bugler
J, Murphy L, Fabre A, Puhr M, Culig Z, Murphy K and Watson RW: The
role of epithelial-mesenchymal transition drivers ZEB1 and ZEB2 in
mediating docetaxel-resistant prostate cancer. Mol Oncol.
11:251–265. 2017. View Article : Google Scholar : PubMed/NCBI
|
41
|
Li L, Liu J, Xue H, Li C, Liu Q, Zhou Y,
Wang T, Wang H, Qian H and Wen T: A TGF-beta-MTA1-SOX4-EZH2
signaling axis drives epithelial-mesenchymal transition in tumor
metastasis. Oncogene. 39:2125–2139. 2020. View Article : Google Scholar : PubMed/NCBI
|