1
|
Matsuda F, Inoue N, Manabe N and Ohkura S:
Follicular growth and atresia in mammalian ovaries: Regulation by
survival and death of granulosa cells. J Reprod Dev. 58:44–50.
2012. View Article : Google Scholar : PubMed/NCBI
|
2
|
Zhao Z, Shi H, Li J, Zhang Y, Chen C and
Guo Y: Cumulative live birth rates according to the number of
oocytes retrieved following the ‘freeze-all’ strategy. Reprod Biol
Endocrinol. 18:142020. View Article : Google Scholar : PubMed/NCBI
|
3
|
Vabre P, Gatimel N, Moreau J, Gayrard V,
Picard-Hagen N, Parinaud J and Leandri RD: Environmental
pollutants, a possible etiology for premature ovarian
insufficiency: A narrative review of animal and human data. Environ
Health. 16:372017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Boone DL, Carnegie JA, Rippstein PU and
Tsang BK: Induction of apoptosis in equine chorionic gonadotropin
(eCG)-primed rat ovaries by anti-eCG antibody. Biol Reprod.
57:420–427. 1997. View Article : Google Scholar : PubMed/NCBI
|
5
|
Boone DL and Tsang BK: Caspase-3 in the
rat ovary: Localization and possible role in follicular atresia and
luteal regression. Biol Reprod. 58:1533–1539. 1998. View Article : Google Scholar : PubMed/NCBI
|
6
|
Cecconi S, Ciccarelli C, Barberi M,
Macchiarelli G and Canipari R: Granulosa cell-oocyte interactions.
Eur J Obstet Gynecol Reprod Biol. 115 (Suppl 1):S19–S22. 2004.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Clarke HJ: Regulation of germ cell
development by intercellular signaling in the mammalian ovarian
follicle. Wiley Interdiscip Rev Dev Biol. 7:10.1002/wdev.294. 2018.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Zhang JQ, Shen M, Zhu CC, Yu FX, Liu ZQ,
Ally N, Sun SC, Li K and Liu HL: 3-Nitropropionic acid induces
ovarian oxidative stress and impairs follicle in mouse. PLoS One.
9:e865892014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Zhang M, Zhang Q, Hu Y, Xu L, Jiang Y,
Zhang C, Ding L, Jiang R, Sun J, Sun H and Yan G: miR-181a
increases FoxO1 acetylation and promotes granulosa cell apoptosis
via SIRT1 downregulation. Cell Death Dis. 8:e30882017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Haraguchi H, Hirota Y, Saito-Fujita T,
Tanaka T, Shimizu-Hirota R, Harada M, Akaeda S, Hiraoka T, Matsuo
M, Matsumoto L, et al: Mdm2-p53-SF1 pathway in ovarian granulosa
cells directs ovulation and fertilization by conditioning oocyte
quality. FASEB J. 33:2610–2620. 2019. View Article : Google Scholar : PubMed/NCBI
|
11
|
Livera G, Uzbekov R, Jarrier P,
Fouchécourt S, Duquenne C, Parent AS, Marine JC and Monget P: Loss
of oocytes due to conditional ablation of Murine double minute 2
(Mdm2) gene is p53-dependent and results in female sterility. FEBS
Lett. 590:2566–2574. 2016. View Article : Google Scholar : PubMed/NCBI
|
12
|
He M, Tan B, Vasan K, Yuan H, Cheng F,
Ramos da Silva S, Lu C and Gao SJ: SIRT1 and AMPK pathways are
essential for the proliferation and survival of primary effusion
lymphoma cells. J Pathol. 242:309–321. 2017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Kume S, Haneda M, Kanasaki K, Sugimoto T,
Araki S, Isono M, Isshiki K, Uzu T, Kashiwagi A and Koya D: Silent
information regulator 2 (SIRT1) attenuates oxidative stress-induced
mesangial cell apoptosis via p53 deacetylation. Free Radic Biol
Med. 40:2175–2182. 2006. View Article : Google Scholar : PubMed/NCBI
|
14
|
Li Y, Yang G, Yang X, Wang W, Zhang J, He
Y, Zhang W, Jing T and Lin R: Nicotinic acid inhibits NLRP3
inflammasome activation via SIRT1 in vascular endothelial cells.
Int Immunopharmacol. 40:211–218. 2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Mendelsohn AR and Larrick JW: The
NAD+/PARP1/SIRT1 Axis in aging. Rejuvenation Res. 20:244–247. 2017.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Zha S, Li Z, Cao Q, Wang F and Liu F:
PARP1 inhibitor (PJ34) improves the function of aging-induced
endothelial progenitor cells by preserving intracellular NAD(+)
levels and increasing SIRT1 activity. Stem Cell Res Ther.
9:2242018. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zheng T and Lu Y: SIRT1 protects human
lens epithelial cells against oxidative stress by inhibiting
p53-dependent apoptosis. Curr Eye Res. 41:1068–1075. 2016.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Han Y, Luo H, Wang H, Cai J and Zhang Y:
SIRT1 induces resistance to apoptosis in human granulosa cells by
activating the ERK pathway and inhibiting NF-κB signaling with
anti-inflammatory functions. Apoptosis. 22:1260–1272. 2017.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Hori YS, Kuno A, Hosoda R and Horio Y:
Regulation of FOXOs and p53 by SIRT1 modulators under oxidative
stress. PLoS One. 8:e738752013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Yamakuchi M and Lowenstein CJ: miR-34,
SIRT1 and p53: The feedback loop. Cell Cycle. 8:712–715. 2009.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Vousden KH and Prives C: Blinded by the
light: The growing complexity of p53. Cell. 137:413–431. 2009.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Aubrey BJ, Kelly GL, Janic A, Herold MJ
and Strasser A: How does p53 induce apoptosis and how does this
relate to p53-mediated tumour suppression? Cell Death Differ.
25:104–113. 2018. View Article : Google Scholar : PubMed/NCBI
|
23
|
Hosokawa K, Aharoni D, Dantes A, Shaulian
E, Schere-Levy C, Atzmon R, Kotsuji F, Oren M, Vlodavsky I and
Amsterdam A: Modulation of Mdm2 expression and p53-induced
apoptosis in immortalized human ovarian granulosa cells.
Endocrinology. 139:4688–4700. 1998. View Article : Google Scholar : PubMed/NCBI
|
24
|
Yang H, Xie Y, Yang D and Ren D: Oxidative
stress-induced apoptosis in granulosa cells involves JNK, p53 and
Puma. Oncotarget. 8:25310–25322. 2017. View Article : Google Scholar : PubMed/NCBI
|
25
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Tatone C, Di Emidio G, Vitti M, Di Carlo
M, Santini S Jr, D'Alessandro AM, Falone S and Amicarelli F:
Sirtuin functions in female fertility: Possible role in oxidative
stress and aging. Oxid Med Cell Longev. 2015:6596872015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Ghosh A, Sengupta A, Seerapu GPK, Nakhi A,
Shivaji Ramarao EVV, Bung N, Bulusu G, Pal M and Haldar D: A novel
SIRT1 inhibitor, 4bb induces apoptosis in HCT116 human colon
carcinoma cells partially by activating p53. Biochem Biophys Res
Commun. 488:562–569. 2017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Gu X, Wang Z, Gao J, Han D, Zhang L, Chen
P, Luo G and Han B: SIRT1 suppresses p53-dependent apoptosis by
modulation of p21 in osteoblast-like MC3T3-E1 cells exposed to
fluoride. Toxicol In Vitro. 57:28–38. 2019. View Article : Google Scholar : PubMed/NCBI
|
29
|
Idil M, Cepni I, Demirsoy G, Ocal P,
Salihoğlu F, Senol H, Elibol F and Irez T: Does granulosa cell
apoptosis have a role in the etiology of unexplained infertility?
Eur J Obstet Gynecol Reprod Biol. 112:182–184. 2004. View Article : Google Scholar : PubMed/NCBI
|
30
|
Nakahara K, Saito H, Saito T, Ito M, Ohta
N, Sakai N, Tezuka N, Hiroi M and Watanabe H: Incidence of
apoptotic bodies in membrana granulosa of the patients
participating in an in vitro fertilization program. Fertil Steril.
67:302–308. 1997. View Article : Google Scholar : PubMed/NCBI
|
31
|
Almeida CP, Ferreira MCF, Silveira CO,
Campos JR, Borges IT, Baeta PG, Silva FHS, Reis FM and Del Puerto
HL: Clinical correlation of apoptosis in human granulosa cells-A
review. Cell Biol Int. 42:1276–1281. 2018. View Article : Google Scholar : PubMed/NCBI
|
32
|
Xiong F, Hu L, Zhang Y, Xiao X and Xiao J:
miR-22 inhibits mouse ovarian granulosa cell apoptosis by targeting
SIRT1. Biol Open. 5:367–371. 2016. View Article : Google Scholar : PubMed/NCBI
|
33
|
Di Emidio G, Falone S, Vitti M,
D'Alessandro AM, Vento M, Di Pietro C, Amicarelli F and Tatone C:
SIRT1 signalling protects mouse oocytes against oxidative stress
and is deregulated during aging. Hum Reprod. 29:2006–2017. 2014.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Zhang H, Vollmer M, De Geyter M,
Litzistorf Y, Ladewig A, Dürrenberger M, Guggenheim R, Miny P,
Holzgreve W and De Geyter C: Characterization of an immortalized
human granulosa cell line (COV434). Mol Hum Reprod. 6:146–153.
2000. View Article : Google Scholar : PubMed/NCBI
|
35
|
Kim JM, Yoon YD and Tsang BK: Involvement
of the Fas/Fas ligand system in p53-mediated granulosa cell
apoptosis during follicular development and atresia. Endocrinology.
140:2307–2317. 1999. View Article : Google Scholar : PubMed/NCBI
|
36
|
Chen L, Willis SN, Wei A, Smith BJ,
Fletcher JI, Hinds MG, Colman PM, Day CL, Adams JM and Huang DC:
Differential targeting of prosurvival Bcl-2 proteins by their
BH3-only ligands allows complementary apoptotic function. Mol Cell.
17:393–403. 2005. View Article : Google Scholar : PubMed/NCBI
|
37
|
Kerr JB, Hutt KJ, Michalak EM, Cook M,
Vandenberg CJ, Liew SH, Bouillet P, Mills A, Scott CL, Findlay JK
and Strasser A: DNA damage-induced primordial follicle oocyte
apoptosis and loss of fertility require TAp63-mediated induction of
Puma and Noxa. Mol Cell. 48:343–352. 2012. View Article : Google Scholar : PubMed/NCBI
|
38
|
Nguyen QN, Zerafa N, Liew SH, Morgan FH,
Strasser A, Scott CL, Findlay JK, Hickey M and Hutt KJ: Loss of
PUMA protects the ovarian reserve during DNA-damaging chemotherapy
and preserves fertility. Cell Death Dis. 9:6182018. View Article : Google Scholar : PubMed/NCBI
|
39
|
Brieger K, Schiavone S, Miller FJ Jr and
Krause KH: Reactive oxygen species: From health to disease. Swiss
Med Wkly. 142:w136592012.PubMed/NCBI
|
40
|
Yi J and Luo J: SIRT1 and p53, effect on
cancer, senescence and beyond. Biochim Biophys Acta.
1804:1684–1689. 2010. View Article : Google Scholar : PubMed/NCBI
|