1
|
Tsai SC: Chronic obstructive pulmonary
disease and sleep related disorders. Curr Opin Pulm Med.
23:124–128. 2017. View Article : Google Scholar : PubMed/NCBI
|
2
|
Portegies ML, Lahousse L, Joos GF, Hofman
A, Koudstaal PJ, Stricker BH, Brusselle GG and Ikram MA: Chronic
obstructive pulmonary disease and the risk of stroke. The Rotterdam
Study. Am J Respir Crit Care Med. 193:251–258. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Gottlieb DJ and Punjabi NM: Diagnosis and
management of obstructive sleep Apnea: A review. JAMA.
323:1389–1400. 2020. View Article : Google Scholar : PubMed/NCBI
|
4
|
Shahar E, Whitney CW, Redline S, Lee ET,
Newman AB, Nieto FJ, O'Connor GT, Boland LL, Schwartz JE and Samet
JM: Sleep-disordered breathing and cardiovascular disease:
Cross-sectional results of the Sleep Heart Health Study. Am J
Respir Crit Care Med. 163:19–25. 2001. View Article : Google Scholar : PubMed/NCBI
|
5
|
Munoz R, Duran-Cantolla J, Martínez-Vila
E, Gallego J, Rubio R, Aizpuru F and De La Torre G: Severe sleep
apnea and risk of ischemic stroke in the elderly. Stroke.
37:2317–2321. 2006. View Article : Google Scholar : PubMed/NCBI
|
6
|
Flenley DC: Sleep in chronic obstructive
lung disease. Clin Chest Med. 6:651–661. 1985.PubMed/NCBI
|
7
|
Marin JM, Soriano JB, Carrizo SJ, Boldova
A and Celli BR: Outcomes in patients with chronic obstructive
pulmonary disease and obstructive sleep apnea: The overlap
syndrome. Am J Respir Crit Care Med. 182:325–331. 2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
Sharma B, Neilan TG, Kwong RY, Mandry D,
Owens RL, McSharry D, Bakker JP and Malhotra A: Evaluation of right
ventricular remodeling using cardiac magnetic resonance imaging in
co-existent chronic obstructive pulmonary disease and obstructive
sleep apnea. COPD. 10:4–10. 2013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Thomashow MA, Shimbo D, Parikh MA, Hoffman
EA, Vogel-Claussen J, Hueper K, Fu J, Liu CY, Bluemke DA,
Ventetuolo CE, et al: Endothelial microparticles in mild chronic
obstructive pulmonary disease and emphysema. The Multi-Ethnic Study
of Atherosclerosis Chronic Obstructive Pulmonary Disease study. Am
J Respir Crit Care Med. 188:60–68. 2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
McNicholas WT: COPD-OSA overlap syndrome:
Evolving evidence regarding epidemiology, clinical consequences,
and management. Chest. 152:1318–1326. 2017. View Article : Google Scholar : PubMed/NCBI
|
11
|
Willerson JT and Ridker PM: Inflammation
as a cardiovascular risk factor. Circulation. 109 (Suppl
1):II2–II10. 2004.PubMed/NCBI
|
12
|
Greenberg H, Ye X, Wilson D, Htoo AK,
Hendersen T and Liu SF: Chronic intermittent hypoxia activates
nuclear factor-kappaB in cardiovascular tissues in vivo. Biochem
Biophys Res Commun. 343:591–596. 2006. View Article : Google Scholar : PubMed/NCBI
|
13
|
Ryan S and McNicholas WT: Intermittent
hypoxia and activation of inflammatory molecular pathways in OSAS.
Arch Physiol Biochem. 114:261–266. 2008. View Article : Google Scholar : PubMed/NCBI
|
14
|
Rezaeetalab F, Rezaeitalab F and Dehestani
V: Inhaled steroids reduce apnea-hypopnea index in overlap
syndrome. Pneumologia. 62:212–214. 2013.PubMed/NCBI
|
15
|
Heise RL, Link PA and Farkas L: From here
to there, progenitor cells and stem cells are everywhere in lung
vascular remodeling. Front Pediatr. 4:802016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Ando J and Yamamoto K: Vascular
mechanobiology: Endothelial cell responses to fluid shear stress.
Circ J. 73:1983–1992. 2009. View Article : Google Scholar : PubMed/NCBI
|
17
|
Shi Z, Chen Y, Cao J, Zeng H, Yang Y, Chen
P, Luo H, Peng H, Cai S and Guan C: Intratracheal transplantation
of endothelial progenitor cells attenuates smoking-induced COPD in
mice. Int J Chron Obstruct Pulmon Dis. 12:947–960. 2017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Sun YQ, Deng MX, He J, Zeng QX, Wen W,
Wong DS, Tse HF, Xu G, Lian Q, Shi J and Fu QL: Human pluripotent
stem cell-derived mesenchymal stem cells prevent allergic airway
inflammation in mice. Stem Cells. 30:2692–2699. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Luo D, Yan X, Liu D, Zhou X and Liu G:
Differential effects of mesenchymal stem cells on a heterogeneous
cell population within lung cancer cell lines. Mol Cell Biochem.
378:107–116. 2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Le Blanc K, Tammik C, Rosendahl K,
Zetterberg E and Ringden O: HLA expression and immunologic
properties of differentiated and undifferentiated mesenchymal stem
cells. Exp Hematol. 31:890–896. 2003. View Article : Google Scholar : PubMed/NCBI
|
21
|
Allers C, Sierralta WD, Neubauer S, Rivera
F, Minguell JJ and Conget PA: Dynamic of distribution of human bone
marrow-derived mesenchymal stem cells after transplantation into
adult unconditioned mice. Transplantation. 78:503–508. 2004.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Carreras A, Almendros I and Farré R:
Potential role of bone marrow mesenchymal stem cells in obstructive
sleep apnea. Int J Stem Cells. 4:43–49. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Park JS, Kim HK, Kang EY, Cho R and Oh YM:
Potential therapeutic strategy in chronic obstructive pulmonary
disease using pioglitazone-augmented Wharton's Jelly-derived
mesenchymal stem cells. Tuberc Respir Dis (Seoul). 82:158–165.
2019. View Article : Google Scholar : PubMed/NCBI
|
24
|
Liu HM, Liu YT, Zhang J and Ma LJ: Bone
marrow mesenchymal stem cells ameliorate lung injury through
anti-inflammatory and antibacterial effect in COPD mice. J Huazhong
Univ Sci Technolog Med Sci. 37:496–504. 2017. View Article : Google Scholar : PubMed/NCBI
|
25
|
Shangguan L, Li X, Wang Z and Luo Z:
Transforming growth factor-β1 induces bone marrow-derived
mesenchymal stem cells to differentiate into cancer-associated
fibroblasts. Zhonghua Zhong Liu Za Zhi. 37:804–809. 2015.(In
Chinese). PubMed/NCBI
|
26
|
Ding W, Li J, Singh J, Alif R,
Vazquez-Padron RI, Gomes SA, Hare JM and Shehadeh LA: miR-30e
targets IGF2-regulated osteogenesis in bone marrow-derived
mesenchymal stem cells, aortic smooth muscle cells, and
ApoE−/− mice. Cardiovasc Res. 106:131–142. 2015.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Chen M, Huang Z, Bi H, Pan X, He J, He L,
He X, Du J, Zhou K, Wang L, et al: Effects of bone marrowderived
mesenchymal stem cell transplantation on chronic obstructive
pulmonary disease/obstructive sleep apnea overlap syndrome in rats.
Mol Med Rep. 20:4665–4673. 2019.PubMed/NCBI
|
28
|
Tang XJ, Wang B, Huang PY, Guo ZT, Tang
QL, Li SS and Yang XM: Effects of chronic intermittent hypoxia on
blood pressure and vascular remodeling. Zhonghua Er Bi Yan Hou Tou
Jing Wai Ke Za Zhi. 54:601–605. 2019.(In Chinese). PubMed/NCBI
|
29
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Zhang XW, Cai W, Jin F, Zhang YQ and Zhang
XL: Effect of Bi-level positive airway pressure ventilator on the
heart function and vascular endothelial function of patients with
the overlap syndrome. Zhonghua Jie He He Hu Xi Za Zhi. 34:17–20.
2011.(In Chinese). PubMed/NCBI
|
31
|
Kadota T, Fujita Y, Yoshioka Y, Araya J,
Kuwano K and Ochiya T: Extracellular vesicles in chronic
obstructive pulmonary disease. Int J Mol Sci. 17:18012016.
View Article : Google Scholar
|
32
|
Weiss DJ, Casaburi R, Flannery R,
LeRoux-Williams M and Tashkin DP: A placebo-controlled, randomized
trial of mesenchymal stem cells in COPD. Chest. 143:1590–1598.
2013. View Article : Google Scholar : PubMed/NCBI
|
33
|
Carreras A, Almendros I, Montserrat JM,
Navajas D and Farré R: Mesenchymal stem cells reduce inflammation
in a rat model of obstructive sleep apnea. Respir Physiol
Neurobiol. 172:210–212. 2010. View Article : Google Scholar : PubMed/NCBI
|
34
|
Luan Y, Zhang ZH, Wei DE, Zhao JJ, Kong F,
Cheng GH and Wang YB: Implantation of mesenchymal stem cells
improves right ventricular impairments caused by experimental
pulmonary hypertension. Am J Med Sci. 343:402–406. 2012. View Article : Google Scholar : PubMed/NCBI
|
35
|
Calió ML, Marinho DS, Ko GM, Ribeiro RR,
Carbonel AF, Oyama LM, Ormanji M, Guirao TP, Calió PL, Reis LA, et
al: Transplantation of bone marrow mesenchymal stem cells decreases
oxidative stress, apoptosis, and hippocampal damage in brain of a
spontaneous stroke model. Free Radic Biol Med. 70:141–154. 2014.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Hung SC, Pochampally RR, Chen SC, Hsu SC
and Prockop DJ: Angiogenic effects of human multipotent stromal
cell conditioned medium activate the PI3K-Akt pathway in hypoxic
endothelial cells to inhibit apoptosis, increase survival, and
stimulate angiogenesis. Stem Cells. 25:2363–2370. 2007. View Article : Google Scholar : PubMed/NCBI
|
37
|
Luo F, Jiang W, Xu Y, Liu XM, Wang W,
Zhang W and Luo C: The mechanisms involved in mesenchymal stem cell
alleviation of sepsis-induced acute lung injury in mice: A pilot
study. Curr Ther Res Clin Exp. 93:1005932020. View Article : Google Scholar : PubMed/NCBI
|
38
|
Zhao FY, Cheng TY, Yang L, Huang YH, Li C,
Han JZ, Li XH, Fang LJ, Feng DD, Tang YT, et al: G-CSF inhibits
pulmonary fibrosis by promoting BMSC homing to the lungs via
SDF-1/CXCR4 chemotaxis. Sci Rep. 10:105152020. View Article : Google Scholar : PubMed/NCBI
|
39
|
Sajeesh S, Broekelman T, Mecham R and
Ramamurthi A: Stem cell derived extracellular vesicles for vascular
elastic matrix regenerative repair. Acta Biomate. 113:267–278.
2020. View Article : Google Scholar
|
40
|
Yamada M, Kubo H, Kobayashi S, Ishizawa K,
Numasaki M, Ueda S, Suzuki T and Sasaki H: Bone marrow-derived
progenitor cells are important for lung repair after
lipopolysaccharide-induced lung injury. J Immunol. 172:1266–1272.
2004. View Article : Google Scholar : PubMed/NCBI
|
41
|
Ortiz LA, Gambelli F, McBride C, Gaupp D,
Baddoo M, Kaminski N and Phinney DG: Mesenchymal stem cell
engraftment in lung is enhanced in response to bleomycin exposure
and ameliorates its fibrotic effects. Proc Natl Acad Sci USA.
100:8407–8411. 2003. View Article : Google Scholar : PubMed/NCBI
|
42
|
Konczalla J, Wanderer S, Mrosek J, Schuss
P, Platz J, Güresir E, Seifert V and Vatter H: Crosstalk between
the angiotensin and endothelin-system in the cerebrovasculature.
Curr Neurovasc Res. 10:335–345. 2013. View Article : Google Scholar : PubMed/NCBI
|
43
|
Millatt LJ, Abdel-Rahman EM and Siragy HM:
Angiotensin II and nitric oxide: A question of balance. Regul Pept.
81:1–10. 1999. View Article : Google Scholar : PubMed/NCBI
|
44
|
Signorello MG, Viviani GL, Armani U,
Cerone R, Minniti G, Piana A and Leoncini G: Homocysteine, reactive
oxygen species and nitric oxide in type 2 diabetes mellitus. Thromb
Res. 120:607–613. 2007. View Article : Google Scholar : PubMed/NCBI
|
45
|
Wiwanitkit V: Endothelin-1 and protein
kinase C co-expression in the pathogenesis of diabetic retinopathy.
J Diabetes Complications. 21:359–362. 2007. View Article : Google Scholar : PubMed/NCBI
|
46
|
Urao N, Okigaki M, Yamada H, Aadachi Y,
Matsuno K, Matsui A, Matsunaga S, Tateishi K, Nomura T, Takahashi
T, et al: Erythropoietin-mobilized endothelial progenitors enhance
reendothelialization via Akt-endothelial nitric oxide synthase
activation and prevent neointimal hyperplasia. Circ Res.
98:1405–1413. 2006. View Article : Google Scholar : PubMed/NCBI
|
47
|
Schwartz R, Osborne-Lawrence S, Hahner L,
Gibson LL, Gormley AK, Vongpatanasin W, Zhu W, Word RA, Seetharam
D, Black S, et al: C-reactive protein downregulates endothelial NO
synthase and attenuates reendothelialization in vivo in mice. Circ
Res. 100:1452–1459. 2007. View Article : Google Scholar : PubMed/NCBI
|
48
|
Tanaka H, Sukhova GK, Swanson SJ, Clinton
SK, Ganz P, Cybulsky MI and Libby P: Sustained activation of
vascular cells and leukocytes in the rabbit aorta after balloon
injury. Circulation. 88:1788–1803. 1993. View Article : Google Scholar : PubMed/NCBI
|