1
|
Zaidi M: Skeletal remodeling in health and
disease. Nat Med. 13:791–801. 2007. View
Article : Google Scholar
|
2
|
Hassan B, Baroukh B, Llorens A, Lesieur J,
Ribbes S, Chaussain C, Saffar JL and Gosset M: NAMPT expression in
osteoblasts controls osteoclast recruitment in alveolar bone
remodeling. J Cell Physiol. 233:7402–7414. 2018. View Article : Google Scholar
|
3
|
Sato S, Hanada R, Kimura A, Abe T,
Matsumoto T, Iwasaki M, Inose H, Ida T, Mieda M, Takeuchi Y, et al:
Central control of bone remodeling by neuromedin U. Nat Med.
13:1234–1240. 2007. View
Article : Google Scholar
|
4
|
Battafarano G, Rossi M, Marampon F and Del
Fattore A: Cellular and molecular mediators of bone metastatic
lesions. Int J Mol Sci. 19:17092018. View Article : Google Scholar
|
5
|
Ni X, Xia T, Zhao Y, Zhou W, Wu N, Liu X,
Ding Q, Zha X, Sha J and Wang S: Downregulation of miR-106b induced
breast cancer cell invasion and motility in association with
overexpression of matrix metalloproteinase 2. Cancer Sci.
105:18–25. 2014. View Article : Google Scholar
|
6
|
Ell B, Mercatali L, Ibrahim T, Campbell N,
Schwarzenbach H, Pantel K, Amadori D and Kang Y: Tumor-induced
osteoclast miRNA changes as regulators and biomarkers of osteolytic
bone metastasis. Cancer Cell. 24:542–56. 2013. View Article : Google Scholar
|
7
|
Huang S, Shao K, Liu Y, Kuang Y, Li J, An
S, Guo Y, Ma H and Jiang C: Tumor-targeting and
microenvironment-responsive smart nanoparticles for combination
therapy of antiangiogenesis and apoptosis. ACS Nano. 7:2860–2871.
2013. View Article : Google Scholar
|
8
|
Bhavani GS, Shah H, Shukla A, Gupta N,
Gowrishankar K, Rao AP, Kabra M, Agarwal M, Ranganath P, Ekbote AV,
et al: Clinical and mutation profile of multicentric osteolysis
nodulosis and arthropathy. Am J Med Genet A. 170A:410–417. 2016.
View Article : Google Scholar
|
9
|
Ragel BT, Mendez GA, Reddington J, Ferachi
D, Kubicky CD, Philipp TC, Zusman NL, Klimo P, Hart R, Yoo J and
Ching AC: Life Expectancy and metastatic spine scoring systems: An
academic institutional experience. Clin Spine Surg. 30:335–342.
2017. View Article : Google Scholar
|
10
|
Croucher PI, McDonald MM and Martin TJ:
Bone metastasis: The importance of the neighbourhood. Nat Rev
Cancer. 16:373–386. 2016. View Article : Google Scholar
|
11
|
Vanek P, Bradac O, Trebicky F, Saur K, de
Lacy P and Benes V: Influence of the preoperative neurological
status on survival after the surgical treatment of symptomatic
spinal metastases with spinal cord compression. Spine (Phila Pa
1976). 40:1824–1830. 2015.
|
12
|
Page-McCaw A, Ewald AJ and Werb Z: Matrix
metalloproteinases and the regulation of tissue remodelling. Nat
Rev Mol Cell Biol. 8:221–233. 2007. View
Article : Google Scholar
|
13
|
Itoh Y: Membrane-type matrix
metalloproteinases: Their functions and regulations. Matrix Biol.
44-46:207–223. 2015. View Article : Google Scholar
|
14
|
Deryugina EI and Quigley JP: Matrix
metalloproteinases and tumor metastasis. Cancer Metastasis Rev.
25:9–34. 2006. View Article : Google Scholar
|
15
|
Henriet P and Emonard H: Matrix
metalloproteinase-2: Not (just) a ‘hero’ of the past. Biochimie.
166:223–232. 2019. View Article : Google Scholar
|
16
|
Zhu L, Xi PW, Li XX, Sun X, Zhou WB, Xia
TS, Shi L, Hu Y, Ding Q and Wei JF: The RNA binding protein RBMS3
inhibits the metastasis of breast cancer by regulating Twist1
expression. J Exp Clin Cancer Res. 38:1052019. View Article : Google Scholar
|
17
|
Merchant N, Nagaraju GP, Rajitha B,
Lammata S, Jella KK, Buchwald ZS, Lakka SS and Ali AN: Matrix
metalloproteinases: Their functional role in lung cancer.
Carcinogenesis. 38:766–780. 2017. View Article : Google Scholar
|
18
|
Wang H, Guan X, Tu Y, Zheng S, Long J, Li
S, Qi C, Xie X, Zhang H and Zhang Y: MicroRNA-29b attenuates
non-small cell lung cancer metastasis by targeting matrix
metalloproteinase 2 and PTEN. J Exp Clin Cancer Res. 34:592015.
View Article : Google Scholar
|
19
|
Tauro M and Lynch CC: Cutting to the
Chase: How matrix metalloproteinase-2 activity controls
breast-cancer-to-bone metastasis. Cancers (Basel). 10:1852018.
View Article : Google Scholar
|
20
|
Coleman RE, Croucher PI, Padhani AR,
Clezardin P, Chow E, Fallon M, Guise T, Colangeli S, Capanna R and
Costa L: Bone metastases. Nat Rev Dis Primers. 6:832020. View Article : Google Scholar
|
21
|
Kenkre JS and Bassett J: The bone
remodelling cycle. Ann Clin Biochem. 55:308–327. 2018. View Article : Google Scholar
|
22
|
Mathis KM, Sturgeon KM, Winkels RM,
Wiskemann J, De Souza MJ and Schmitz KH: Bone resorption and bone
metastasis risk. Med Hypotheses. 118:36–41. 2018. View Article : Google Scholar
|
23
|
Dutta A, Li J, Lu H, Akech J, Pratap J,
Wang T, Zerlanko BJ, FitzGerald TJ, Jiang Z, Birbe R, et al:
Integrin αvβ6 promotes an osteolytic program in cancer cells by
upregulating MMP2. Cancer Res. 74:1598–1608. 2014. View Article : Google Scholar
|
24
|
Chen PC, Tang CH, Lin LW, Tsai CH, Chu CY,
Lin TH and Huang YL: Thrombospondin-2 promotes prostate cancer bone
metastasis by the up-regulation of matrix metalloproteinase-2
through down-regulating miR-376c expression. J Hematol Oncol.
10:332017. View Article : Google Scholar
|
25
|
Zhong Y, Lu YT, Sun Y, Shi ZH, Li NG, Tang
YP and Duan JA: Recent opportunities in matrix metalloproteinase
inhibitor drug design for cancer. Expert Opin Drug Discov.
13:75–87. 2018. View Article : Google Scholar
|
26
|
Li K, Tay FR and Yiu CKY: The past,
present and future perspectives of matrix metalloproteinase
inhibitors. Pharmacol Ther. 207:1074652020. View Article : Google Scholar
|
27
|
Fields GB: Mechanisms of action of novel
drugs targeting angiogenesis-promoting matrix metalloproteinases.
Front Immunol. 10:12782019. View Article : Google Scholar
|
28
|
Winer A, Adams S and Mignatti P: Matrix
metalloproteinase inhibitors in cancer therapy: Turning past
failures into future successes. Mol Cancer Ther. 17:1147–1155.
2018. View Article : Google Scholar
|
29
|
Bonfil RD, Sabbota A, Nabha S, Bernardo
MM, Dong Z, Meng H, Yamamoto H, Chinni SR, Lim IT, Chang M, et al:
Inhibition of human prostate cancer growth, osteolysis and
angiogenesis in a bone metastasis model by a novel mechanism-based
selective gelatinase inhibitor. Int J Cancer. 118:2721–276. 2006.
View Article : Google Scholar
|
30
|
Tao P, Fisher JF, Mobashery S and Schlegel
HB: DFT studies of the ring-opening mechanism of SB-3CT, a potent
inhibitor of matrix metalloproteinase 2. Org Lett. 11:2559–2562.
2009. View Article : Google Scholar
|
31
|
Martignetti JA, Aqeel AA, Sewairi WA,
Boumah CE, Kambouris M, Mayouf SA, Sheth KV, Eid WA, Dowling O,
Harris J, et al: Mutation of the matrix metalloproteinase 2 gene
(MMP2) causes a multicentric osteolysis and arthritis syndrome. Nat
Genet. 28:261–265. 2001. View
Article : Google Scholar
|
32
|
Evans BR, Mosig RA, Lobl M, Martignetti
CR, Camacho C, Grum-Tokars V, Glucksman MJ and Martignetti JA:
Mutation of membrane type-1 metalloproteinase, MT1-MMP, causes the
multicentric osteolysis and arthritis disease Winchester syndrome.
Am J Hum Genet. 91:572–576. 2012. View Article : Google Scholar
|
33
|
de Vos IJHM, Tao EY, Ong SLM, Goggi JL,
Scerri T, Wilson GR, Low CGM, Wong ASW, Grussu D, Stegmann APA, et
al: Functional analysis of a hypomorphic allele shows that MMP14
catalytic activity is the prime determinant of the Winchester
syndrome phenotype. Hum Mol Genet. 27:2775–2788. 2018. View Article : Google Scholar
|
34
|
Kröger L, Löppönen T, Ala-Kokko L, Kröger
H, Jauhonen HM, Lehti K and Jääskeläinen J: A novel mutation in the
matrix metallopeptidase 2 coding gene associated with intrafamilial
variability of multicentric osteolysis, nodulosis, and arthropathy.
Mol Genet Genomic Med. 7:e8022019. View Article : Google Scholar
|
35
|
Dagher R, Saliba E, Rizkallah M, Khalife
MCF and Megarbane A: Multicentric osteolysis with nodulosis and
arthropathy (Mona): Report of the first lebanese family. Ann Rheum
Dis. 77:496–497. 2018.
|
36
|
de Vos I, Wong ASW, Welting TJM, Coull BJ
and van Steensel MAM: Multicentric osteolytic syndromes represent a
phenotypic spectrum defined by defective collagen remodeling. Am J
Med Genet A. 179:1652–1664. 2019. View Article : Google Scholar
|
37
|
Vanatka R, Rouzier C, Lambert JC, Leroux C
and Coussement A: Winchester syndrome: The progression of
radiological findings over a 23-year period. Skeletal Radiol.
40:347–351. 2011. View Article : Google Scholar
|
38
|
Azzollini J, Rovina D, Gervasini C,
Parenti I, Fratoni A, Cubellis MV, Cerri A, Pietrogrande L and
Larizza L: Functional characterisation of a novel mutation
affecting the catalytic domain of MMP2 in siblings with
multicentric osteolysis, nodulosis and arthropathy. J Hum Genet.
59:631–637. 2014. View Article : Google Scholar
|
39
|
Mosig RA and Martignetti JA: Loss of MMP-2
in murine osteoblasts upregulates osteopontin and bone sialoprotein
expression in a circuit regulating bone homeostasis. Dis Model
Mech. 6:397–403. 2013. View Article : Google Scholar
|
40
|
Massague J and Obenauf AC: Metastatic
colonization by circulating tumour cells. Nature. 529:298–306.
2016. View Article : Google Scholar
|
41
|
Svandova E, Vesela B, Lesot H, Sadoine J,
Poliard A and Matalova E: FasL modulates expression of Mmp2 in
osteoblasts. Front Physiol. 9:13142018. View Article : Google Scholar
|
42
|
Feng P, Zhang H, Zhang Z, Dai X, Mao T,
Fan Y, Xie X, Wen H, Yu P, Hu Y and Yana R: The interaction of
MMP-2/B7-H3 in human osteoporosis. Clin Immunol. 162:118–1124.
2016. View Article : Google Scholar
|
43
|
Pesce Viglietti AI, Arriola Benitez PC,
Gentilini MV, Velasquez LN, Fossati CA, Giambartolomei GH and
Delpino MV: Brucella abortus invasion of osteocytes modulates
connexin 43 and integrin expression and induces osteoclastogenesis
via receptor activator of NF-κB ligand and tumor necrosis factor
Alpha Secretion. Infect Immun. 84:11–20. 2016. View Article : Google Scholar
|
44
|
Hong G, Zhou L, Shi X, He W, Wang H, Wei
Q, Chen P, Qi L, Tickner J, Lin L and Xu J: Bajijiasu abrogates
osteoclast differentiation via the suppression of RANKL signaling
pathways through NF-κB and NFAT. Int J Mol Sci. 18:2032017.
View Article : Google Scholar
|
45
|
Waning DL, Mohammad KS, Reiken S, Xie W,
Andersson DC, John S, Chiechi A, Wright LE, Umanskaya A, Niewolna
M, et al: Excess TGF-β mediates muscle weakness associated with
bone metastases in mice. Nat Med. 21:1262–1271. 2015. View Article : Google Scholar
|
46
|
Luis-Ravelo D, Antón I, Zandueta C,
Valencia K, Ormazábal C, Martínez-Canarias S, Guruceaga E, Perurena
N, Vicent S, De Las Rivas J and Lecanda F: A gene signature of bone
metastatic colonization sensitizes for tumor-induced osteolysis and
predicts survival in lung cancer. Oncogene. 33:5090–5099. 2014.
View Article : Google Scholar
|
47
|
El-Farrash RA, Ali RH and Barakat NM:
Post-natal bone physiology. Semin Fetal Neonatal Med.
25:1010772020. View Article : Google Scholar
|
48
|
Rhodes SD, Wu X, He Y, Chen S, Yang H,
Staser KW, Wang J, Zhang P, Jiang C, Yokota H, et al: Hyperactive
transforming growth factor-β1 signaling potentiates skeletal
defects in a neurofibromatosis type 1 mouse model. J Bone Miner
Res. 28:2476–2489. 2013. View Article : Google Scholar
|
49
|
Juarez P and Guise TA: TGF-β in cancer and
bone: Implications for treatment of bone metastases. Bone.
48:23–29. 2011. View Article : Google Scholar
|
50
|
Quintero-Fabian S, Arreola R,
Becerril-Villanueva E, Torres-Romero JC, Arana-Argaez V,
Lara-Riegos J, Ramirez-Camacho MA and Alvarez-Sanchez ME: Role of
matrix metalloproteinases in angiogenesis and cancer. Front Oncol.
9:13702019. View Article : Google Scholar
|
51
|
Li Q, Yang J, Chen C, Lin X, Zhou M, Zhou
Z and Huang Y: A novel mitochondrial targeted hybrid peptide
modified HPMA copolymers for breast cancer metastasis suppression.
J Control Release. 325:38–51. 2020. View Article : Google Scholar
|
52
|
Itoh T, Tanioka M, Yoshida H, Yoshioka T,
Nishimoto H and Itohara S: Reduced angiogenesis and tumor
progression in gelatinase A-deficient mice. Cancer Res.
58:1048–1051. 1998.
|
53
|
Saran WR, Chierice GO, da Silva RA, de
Queiroz AM, Paula-Silva FW and da Silva LA: Castor oil polymer
induces bone formation with high matrix metalloproteinase-2
expression. J Biomed Mater Res A. 102:324–331. 2014. View Article : Google Scholar
|
54
|
Itoh T, Ikeda T, Gomi H, Nakao S, Suzuki T
and Itohara S: Unaltered secretion of beta-amyloid precursor
protein in gelatinase A (matrix metalloproteinase 2)-deficient
mice. J Biol Chem. 272:22389–22392. 1997. View Article : Google Scholar
|
55
|
Mosig RA, Dowling O, DiFeo A, Ramirez MC,
Parker IC, Abe E, Diouri J, Aqeel AA, Wylie JD, Oblander SA, et al:
Loss of MMP-2 disrupts skeletal and craniofacial development and
results in decreased bone mineralization, joint erosion and defects
in osteoblast and osteoclast growth. Hum Mol Genet. 16:1113–1123.
2007. View Article : Google Scholar
|
56
|
Inoue K, Mikuni-Takagaki Y, Oikawa K, Itoh
T, Inada M, Noguchi T, Park JS, Onodera T, Krane SM, Noda M and
Itohara S: A crucial role for matrix metalloproteinase 2 in
osteocytic canalicular formation and bone metabolism. J Biol Chem.
281:33814–3324. 2006. View Article : Google Scholar
|
57
|
Nyman JS, Lynch CC, Perrien DS, Thiolloy
S, O'Quinn EC, Patil CA, Bi X, Pharr GM, Mahadevan-Jansen A and
Mundy GR: Differential effects between the loss of MMP-2 and MMP-9
on structural and tissue-level properties of bone. J Bone Miner
Res. 26:1252–1260. 2011. View Article : Google Scholar
|
58
|
Lieu S, Hansen E, Dedini R, Behonick D,
Werb Z, Miclau T, Marcucio R and Colnot C: Impaired remodeling
phase of fracture repair in the absence of matrix
metalloproteinase-2. Dis Model Mech. 4:203–211. 2011. View Article : Google Scholar
|
59
|
Mumm S, Huskey M, Duan S, Wenkert D,
Madson KL, Gottesman GS, Nenninger AR, Laxer RM, McAlister WH and
Whyte MP: Multicentric carpotarsal osteolysis syndrome is caused by
only a few domain-specific mutations in MAFB, a negative regulator
of RANKL-induced osteoclastogenesis. Am J Med Genet A.
164A:2287–2293. 2014. View Article : Google Scholar
|
60
|
Lazarus S, Tseng HW, Lawrence F, Woodruff
MA, Duncan EL and Pettit AR: Characterization of normal murine
carpal bone development prompts Re-evaluation of pathologic
osteolysis as the cause of human Carpal-tarsal osteolysis
disorders. Am J Pathol. 187:1923–1934. 2017. View Article : Google Scholar
|
61
|
Russo MV, Latour LL and McGavern DB:
Distinct myeloid cell subsets promote meningeal remodeling and
vascular repair after mild traumatic brain injury. Nat Immunol.
19:442–452. 2018. View Article : Google Scholar
|
62
|
Rundhaug JE: Matrix metalloproteinases and
angiogenesis. J Cell Mol Med. 9:267–285. 2005. View Article : Google Scholar
|
63
|
Cheng XW, Kuzuya M, Nakamura K, Maeda K,
Tsuzuki M, Kim W, Sasaki T, Liu Z, Inoue N, Kondo T, et al:
Mechanisms underlying the impairment of ischemia-induced
neovascularization in matrix metalloproteinase 2-deficient mice.
Circ Res. 100:904–913. 2007. View Article : Google Scholar
|
64
|
Trivedi A, Zhang H, Ekeledo A, Lee S, Werb
Z, Plant GW and Noble-Haeusslein LJ: Deficiency in matrix
metalloproteinase-2 results in long-term vascular instability and
regression in the injured mouse spinal cord. Exp Neurol. 284:50–62.
2016. View Article : Google Scholar
|
65
|
Peng Y, Wu S, Li Y and Crane JL: Type H
blood vessels in bone modeling and remodeling. Theranostics.
10:426–436. 2020. View Article : Google Scholar
|
66
|
Yang P, Lv S, Wang Y, Peng Y, Ye Z, Xia Z,
Ding G, Cao X and Crane JL: Preservation of type H vessels and
osteoblasts by enhanced preosteoclast platelet-derived growth
factor type BB attenuates glucocorticoid-induced osteoporosis in
growing mice. Bone. 114:1–13. 2018. View Article : Google Scholar
|
67
|
Romeo SG, Alawi KM, Rodrigues J, Singh A,
Kusumbe AP and Ramasamy SK: Endothelial proteolytic activity and
interaction with non-resorbing osteoclasts mediate bone elongation.
Nat Cell Biol. 21:430–441. 2019. View Article : Google Scholar
|
68
|
Elefteriou F: Impact of the autonomic
nervous system on the skeleton. Physiol Rev. 98:1083–1112. 2018.
View Article : Google Scholar
|
69
|
Reid IR, Baldock PA and Cornish J: Effects
of leptin on the skeleton. Endocr Rev. 39:938–959. 2018. View Article : Google Scholar
|
70
|
Mazor R, Friedmann-Morvinski D, Alsaigh T,
Kleifeld O, Kistler EB, Rousso-Noori L, Huang C, Li JB, Verma IM
and Schmid-Schonbein GW: Cleavage of the leptin receptor by matrix
metalloproteinase-2 promotes leptin resistance and obesity in mice.
Sci Transl Med. 10:eaah63242018. View Article : Google Scholar
|
71
|
Lee WC, Guntur AR, Long F and Rosen CJ:
Energy metabolism of the osteoblast: Implications for osteoporosis.
Endocr Rev. 38:255–266. 2017. View Article : Google Scholar
|
72
|
Fernandez-Patron C, Kassiri Z and Leung D:
Modulation of systemic metabolism by MMP-2: From MMP-2 deficiency
in Mice to MMP-2 deficiency in patients. Compr Physiol.
6:1935–1949. 2016. View Article : Google Scholar
|
73
|
Fernandez-Patron C, Stewart KG, Zhang Y,
Koivunen E, Radomski MW and Davidge ST: Vascular matrix
metalloproteinase-2-dependent cleavage of calcitonin gene-related
peptide promotes vasoconstriction. Circ Res. 87:670–676. 2000.
View Article : Google Scholar
|
74
|
Kwan JA, Schulze CJ, Wang W, Leon H,
Sariahmetoglu M, Sung M, Sawicka J, Sims DE, Sawicki G and Schulz
R: Matrix metalloproteinase-2 (MMP-2) is present in the nucleus of
cardiac myocytes and is capable of cleaving poly (ADP-ribose)
polymerase (PARP) in vitro. FASEB J. 18:690–692. 2004. View Article : Google Scholar
|