1
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Bardia A, Mayer IA, Vahdat LT, Tolaney SM,
Isakoff SJ, Diamond JR, O'Shaughnessy J, Moroose RL, Santin AD,
Abramson VG, et al: Sacituzumab govitecan-hziy in refractory
metastatic triple-negative breast cancer. N Engl J Med.
380:741–751. 2019. View Article : Google Scholar : PubMed/NCBI
|
3
|
Anders CK, Zagar TM and Carey LA: The
management of early-stage and metastatic triple-negative breast
cancer: A review. Hematol Oncol Clin North Am. 27737–749.
(viii)2013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Trivers KF, Lund MJ, Porter PL, Liff JM,
Flagg EW, Coates RJ and Eley JW: The epidemiology of
triple-negative breast cancer, including race. Cancer Causes
Control. 20:1071–1082. 2009. View Article : Google Scholar : PubMed/NCBI
|
5
|
Plasilova ML, Hayse B, Killelea BK,
Horowitz NR, Chagpar AB and Lannin DR: Features of triple-negative
breast cancer: Analysis of 38,813 cases from the national cancer
database. Medicine (Baltimore). 95:e46142016. View Article : Google Scholar : PubMed/NCBI
|
6
|
Kohler BA, Sherman RL, Howlader N, Jemal
A, Ryerson AB, Henry KA, Boscoe FP, Cronin KA, Lake A, Noone AM, et
al: Annual report to the nation on the status of cancer, 1975–2011,
featuring incidence of breast cancer subtypes by race/ethnicity,
poverty, and state. J Natl Cancer Inst. 107:djv0482015. View Article : Google Scholar : PubMed/NCBI
|
7
|
DeSantis CE, Fedewa SA, Goding Sauer A,
Kramer JL, Smith RA and Jemal A: Breast cancer statistics, 2015:
Convergence of incidence rates between black and white women. CA
Cancer J Clin. 66:31–42. 2016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Fornaro M, Dell'Arciprete R, Stella M,
Bucci C, Nutini M, Capri MG and Alberti S: Cloning of the gene
encoding Trop-2, a cell-surface glycoprotein expressed by human
carcinomas. Int J Cancer. 62:610–618. 1995. View Article : Google Scholar : PubMed/NCBI
|
9
|
Alberti S, Miotti S, Stella M, Klein CE,
Fornaro M, Menard S and Colnaghi MI: Biochemical characterization
of Trop-2, a cell surface molecule expressed by human carcinomas:
Formal proof that the monoclonal antibodies T16 and MOv-16
recognize Trop-2. Hybridoma. 11:539–545. 1992. View Article : Google Scholar : PubMed/NCBI
|
10
|
Lipinski M, Parks DR, Rouse RV and
Herzenberg LA: Human trophoblast cell-surface antigens defined by
monoclonal antibodies. Proc Natl Acad Sci USA. 78:5147–5150. 1981.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Schon MP and Orfanos CE: Transformation of
human keratinocytes is characterized by quantitative and
qualitative alterations of the T-16 antigen (Trop-2, MOv-16). Int J
Cancer. 60:88–92. 1995. View Article : Google Scholar : PubMed/NCBI
|
12
|
Zaman S, Jadid H, Denson AC and Gray JE:
Targeting Trop-2 in solid tumors: Future prospects. Onco Targets
Ther. 12:1781–1790. 2019. View Article : Google Scholar : PubMed/NCBI
|
13
|
Guan H, Guo Z, Liang W, Li H, Wei G, Xu L,
Xiao H and Li Y: Trop2 enhances invasion of thyroid cancer by
inducing MMP2 through ERK and JNK pathways. BMC Cancer. 17:4862017.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Goldenberg DM, Stein R and Sharkey RM: The
emergence of trophoblast cell-surface antigen 2 (TROP-2) as a novel
cancer target. Oncotarget. 9:28989–29006. 2018. View Article : Google Scholar : PubMed/NCBI
|
15
|
Goldenberg DM, Cardillo TM, Govindan SV,
Rossi EA and Sharkey RM: Trop-2 is a novel target for solid cancer
therapy with sacituzumab govitecan (IMMU-132), an antibody-drug
conjugate (ADC). Oncotarget. 6:22496–22512. 2015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Goldstein AS, Huang J, Guo C, Garraway IP
and Witte ON: Identification of a cell of origin for human prostate
cancer. Science. 329:568–571. 2010. View Article : Google Scholar : PubMed/NCBI
|
17
|
Goldstein AS, Lawson DA, Cheng D, Sun W,
Garraway IP and Witte ON: Trop2 identifies a subpopulation of
murine and human prostate basal cells with stem cell
characteristics. Proc Natl Acad Sci USA. 105:20882–20887. 2008.
View Article : Google Scholar : PubMed/NCBI
|
18
|
King GT, Eaton KD, Beagle BR, Zopf CJ,
Wong GY, Krupka HI, Hua SY, Messersmith WA and El-Khoueiry AB: A
phase 1, dose-escalation study of PF-06664178, an
anti-Trop-2/Aur0101 antibody-drug conjugate in patients with
advanced or metastatic solid tumors. Invest New Drugs. 36:836–847.
2018. View Article : Google Scholar : PubMed/NCBI
|
19
|
Cardillo TM, Govindan SV, Sharkey RM,
Trisal P, Arrojo R, Liu D, Rossi EA, Chang CH and Goldenberg DM:
Sacituzumab govitecan (IMMU-132), an anti-trop-2/SN-38
antibody-drug conjugate: Characterization and efficacy in
pancreatic, gastric, and other cancers. Bioconjug Chem. 26:919–931.
2015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Cardillo TM, Govindan SV, Sharkey RM,
Trisal P and Goldenberg DM: Humanized anti-Trop-2 IgG-SN-38
conjugate for effective treatment of diverse epithelial cancers:
Preclinical studies in human cancer xenograft models and monkeys.
Clin Cancer Res. 17:3157–3169. 2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Okajima D, Yasuda S, Yokouchi Y, Fujitani
T, Sakurai K and Yamaguchi J: Preclinical efficacy studies of
DS-1062a, a novel TROP2-targeting antibody-drug conjugate with a
novel DNA topoisomerase I inhibitor DXd. J Clinical Oncol. 36
(Suppl 15):e242062018. View Article : Google Scholar
|
22
|
Itai S, Fujii Y, Nakamura T, Chang YW,
Yanaka M, Saidoh N, Handa S, Suzuki H, Harada H, Yamada S, et al:
Establishment of CMab-43, a sensitive and specific anti-CD133
monoclonal antibody, for immunohistochemistry. Monoclon Antib
Immunodiagn Immunother. 36:231–235. 2017. View Article : Google Scholar : PubMed/NCBI
|
23
|
Yamada S, Kaneko MK, Sayama Y, Asano T,
Sano M, Yanaka M, Nakamura T, Okamoto S, Handa S, Komatsu Y, et al:
Development of novel mouse monoclonal antibodies against human
CD19. Monoclon Antib Immunodiagn Immunother. 39:45–50. 2020.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Furusawa Y, Kaneko MK and Kato Y:
Establishment of C20Mab-11, a novel anti-CD20 monoclonal antibody,
for the detection of B cells. Oncol Lett. 20:1961–1967. 2020.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Yamada S, Itai S, Nakamura T, Yanaka M,
Kaneko MK and Kato Y: Detection of high CD44 expression in oral
cancers using the novel monoclonal antibody, C(44)Mab-5. Biochem
Biophys Rep. 14:64–68. 2018.PubMed/NCBI
|
26
|
Yamada S, Itai S, Nakamura T, Yanaka M,
Chang YW, Suzuki H, Kaneko MK and Kato Y: Monoclonal antibody
L(1)Mab-13 detected human PD-L1 in lung cancers. Monoclon Antib
Immunodiagn Immunother. 37:110–115. 2018. View Article : Google Scholar : PubMed/NCBI
|
27
|
Fujii Y, Kaneko M, Neyazaki M, Nogi T,
Kato Y and Takagi J: PA tag: A versatile protein tagging system
using a super high affinity antibody against a dodecapeptide
derived from human podoplanin. Protein Expr Purif. 95:240–247.
2014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Fujii Y, Kaneko MK, Ogasawara S, Yamada S,
Yanaka M, Nakamura T, Saidoh N, Yoshida K, Honma R and Kato Y:
Development of RAP Tag, a novel tagging system for protein
detection and purification. Monoclon Antib Immunodiagn Immunother.
36:68–71. 2017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Fujii Y, Kaneko MK and Kato Y: MAP Tag: A
novel tagging system for protein purification and detection.
Monoclon Antib Immunodiagn Immunother. 35:293–299. 2016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Kohler G and Milstein C: Continuous
cultures of fused cells secreting antibody of predefined
specificity. Nature. 256:495–497. 1975. View Article : Google Scholar : PubMed/NCBI
|
31
|
Kato Y, Kaneko MK, Kuno A, Uchiyama N,
Amano K, Chiba Y, Hasegawa Y, Hirabayashi J, Narimatsu H, Mishima K
and Osawa M: Inhibition of tumor cell-induced platelet aggregation
using a novel anti-podoplanin antibody reacting with its
platelet-aggregation-stimulating domain. Biochem Biophys Res
Commun. 349:1301–1307. 2006. View Article : Google Scholar : PubMed/NCBI
|
32
|
Itai S, Fujii Y, Kaneko MK, Yamada S,
Nakamura T, Yanaka M, Saidoh N, Chang YW, Handa S, Takahashi M, et
al: H2Mab-77 is a sensitive and specific Anti-HER2 monoclonal
antibody against breast cancer. Monoclon Antib Immunodiagn
Immunother. 36:143–148. 2017. View Article : Google Scholar : PubMed/NCBI
|
33
|
Furusawa Y, Yamada S, Itai S, Nakamura T,
Yanaka M, Sano M, Harada H, Fukui M, Kaneko MK and Kato Y:
PMab-219: A monoclonal antibody for the immunohistochemical
analysis of horse podoplanin. Biochem Biophys Rep.
18:1006162019.PubMed/NCBI
|
34
|
Furusawa Y, Kaneko MK, Nakamura T, Itai S,
Fukui M, Harada H, Yamada S and Kato Y: Establishment of a
monoclonal antibody PMab-231 for tiger podoplanin. Monoclon Antib
Immunodiagn Immunother. 38:89–95. 2019. View Article : Google Scholar : PubMed/NCBI
|
35
|
Furusawa Y, Takei J, Sayama Y, Yamada S,
Kaneko MK and Kato Y: Development of an anti-bear podoplanin
monoclonal antibody PMab-247 for immunohistochemical analysis.
Biochem Biophys Rep. 18:1006442019.PubMed/NCBI
|
36
|
Furusawa Y, Yamada S, Itai S, Nakamura T,
Takei J, Sano M, Harada H, Fukui M, Kaneko MK and Kato Y:
Establishment of a monoclonal antibody PMab-233 for
immunohistochemical analysis against Tasmanian devil podoplanin.
Biochem Biophys Rep. 18:1006312019.PubMed/NCBI
|
37
|
Polyak MJ, Li H, Shariat N and Deans JP:
CD20 homo-oligomers physically associate with the B cell antigen
receptor. Dissociation upon receptor engagement and recruitment of
phosphoproteins and calmodulin-binding proteins. J Biol Chem.
283:18545–18552. 2008. View Article : Google Scholar : PubMed/NCBI
|
38
|
Li H, Ayer LM, Lytton J and Deans JP:
Store-operated cation entry mediated by CD20 in membrane rafts. J
Biol Chem. 278:42427–42434. 2003. View Article : Google Scholar : PubMed/NCBI
|
39
|
Kaneko MK, Nakamura T, Honma R, Ogasawara
S, Fujii Y, Abe S, Takagi M, Harada H, Suzuki H, Nishioka Y and
Kato Y: Development and characterization of anti-glycopeptide
monoclonal antibodies against human podoplanin, using
glycan-deficient cell lines generated by CRISPR/Cas9 and TALEN.
Cancer Med. 6:382–396. 2017. View Article : Google Scholar : PubMed/NCBI
|
40
|
Ogasawara S, Kaneko MK and Kato Y:
LpMab-19 recognizes sialylated O-Glycan on Thr76 of human
podoplanin. Monoclon Antib Immunodiagn Immunother. 35:245–253.
2016. View Article : Google Scholar : PubMed/NCBI
|
41
|
van Rij CM, Frielink C, Goldenberg DM,
Sharkey RM, Lütje S, McBride WJ, Oyen WJG and Boerman OC:
Pretargeted radioimmunotherapy of prostate cancer with an
anti-TROP-2×Anti-HSG bispecific antibody and a (177)Lu-labeled
peptide. Cancer Biother Radiopharm. 29:323–329. 2014. View Article : Google Scholar : PubMed/NCBI
|
42
|
Nishimura T, Mitsunaga M, Sawada R, Saruta
M, Kobayashi H, Matsumoto N, Kanke T, Yanai H and Nakamura K:
Photoimmunotherapy targeting biliary-pancreatic cancer with
humanized anti-TROP2 antibody. Cancer Med. 8:7781–7792. 2019.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Zhao W, Jia L, Zhang M, Huang X, Qian P,
Tang Q, Zhu J and Feng Z: The killing effect of novel bi-specific
Trop2/PD-L1 CAR-T cell targeted gastric cancer. Am J Cancer Res.
9:1846–1856. 2019.PubMed/NCBI
|