1
|
Zha L, Sobue T, Kitamura T, Kitamura Y,
Sawada N, Iwasaki M, Sasazuki S, Yamaji T, Shimazu T and Tsugane S:
Changes in smoking Status and mortality from all causes and lung
cancer: A longitudinal analysis of a population-based study in
Japan. J Epidemiol. 29:11–17. 2019. View Article : Google Scholar
|
2
|
Imbimbo M, Vitali M, Fabbri A, Ottaviano
M, Pasello G, Petrini I, Palmieri G, Berardi R, Zucali P,
Ganzinelli M, et al: Relevent trial: Phase II trial of ramucirumab,
carboplatin, and paclitaxel in previously untreated thymic
carcinoma/B3 thymoma with area of carcinoma. Clin Lung Cancer.
19:e811–e814. 2018. View Article : Google Scholar
|
3
|
Yang D, Liu Y, Bai C, Wang X and Powell
CA: Epidemiology of lung cancer and lung cancer screening programs
in China and the United States. Cancer Lett. 468:82–87. 2020.
View Article : Google Scholar
|
4
|
Cao M and Chen W: Epidemiology of lung
cancer in China. Thorac Cancer. 10:3–7. 2019. View Article : Google Scholar
|
5
|
Duma N, Santana-Davila R and Molina JR:
Non-small cell lung cancer: Epidemiology, screening, diagnosis, and
treatment. Mayo Clin Proc. 94:1623–1640. 2019. View Article : Google Scholar
|
6
|
Neal RD, Sun F, Emery JD and Callister ME:
Lung cancer. BMJ. 365:l17252019. View Article : Google Scholar
|
7
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2018. CA Cancer J Clin. 68:7–30. 2018. View Article : Google Scholar
|
8
|
Lee YG, Lee JH, Kim SH, Kim YJ, Lee H, Ahn
S, Jang JS, Lee JS and Kim JH: Comparative analysis between
combination and single-agent chemotherapy for elderly patients with
advanced non-small cell lung cancer: A nationwide population-based
outcome study. Lung Cancer. 122:88–93. 2018. View Article : Google Scholar
|
9
|
Lee JS, Lee KH, Cho EK, Kim DW, Kim SW,
Kim JH, Cho BC, Kang JH, Han JY, Min YJ, et al: Nivolumab in
advanced non-small-cell lung cancer patients who failed prior
platinum-based chemotherapy. Lung Cancer. 122:234–242. 2018.
View Article : Google Scholar
|
10
|
Yu X, Zhang L and Chen J: Effectiveness of
treatment with endostatin in combination with emcitabine,
carboplatin, and gemcitabine in patients with advanced non-small
cell lung cancer: A retrospective study. Open Med (Wars).
13:142–147. 2018. View Article : Google Scholar
|
11
|
Makino A, Miyazaki A, Tomoike A, Kimura H,
Arimitsu K, Hirata M, Ohmomo Y, Nishii R, Okazawa H, Kiyono Y, et
al: PET probe detecting non-small cell lung cancer susceptible to
epidermal growth factor receptor tyrosine kinase inhibitor therapy.
Bioorg Med Chem. 26:1609–1613. 2018. View Article : Google Scholar
|
12
|
To KK, Tong CW, Wu M and Cho WC: MicroRNAs
in the prognosis and therapy of colorectal cancer: From bench to
bedside. World J Gastroenterol. 24:2949–2973. 2018. View Article : Google Scholar
|
13
|
Migliore C and Giordano S: Resistance to
targeted therapies: A role for microRNAs? Trends Mol Med.
19:633–642. 2013. View Article : Google Scholar
|
14
|
Cao L, Wan Q, Li F and Tang CE: MiR-363
inhibits cisplatin chemoresistance of epithelial ovarian cancer by
regulating snail-induced epithelial-mesenchymal transition. BMB
Rep. 51:456–461. 2018. View Article : Google Scholar
|
15
|
Wang F, Zhao L, Zhang J, Meng Z, Zhou C,
Wang G, Liu Y, Li M, Xi J, Niu W, et al: Chemotherapy-induced
miR-141/MAP4K4 signaling suppresses progression of colorectal
cancer. Biosci Rep. 38:BSR201809782018. View Article : Google Scholar
|
16
|
Li Q, Li B, Li Q, Wei S, He Z, Huang X,
Wang L, Xia Y, Xu Z, Li Z, et al: Exosomal miR-21-5p derived from
gastric cancer promotes peritoneal metastasis via
mesothelial-to-mesenchymal transition. Cell Death Dis. 9:8542018.
View Article : Google Scholar
|
17
|
Aggarwal P, Challa KR, Rath M, Sunkara P
and Nath U: Generation of inducible transgenic lines of arabidopsis
transcription factors regulated by microRNAs. Methods Mol Biol.
1830:61–79. 2018. View Article : Google Scholar
|
18
|
Bueno MJ and Malumbres M: MicroRNAs and
the cell cycle. Biochim Biophys Acta. 1812:592–601. 2011.
View Article : Google Scholar
|
19
|
Schneider C, Setty M, Holmes AB, Maute RL,
Leslie CS, Mussolin L, Rosolen A, Dalla-Favera R and Basso K:
MicroRNA 28 controls cell proliferation and is down-regulated in
B-cell lymphomas. Proc Natl Acad Sci USA. 111:8185–8190. 2014.
View Article : Google Scholar
|
20
|
Bukhari SI, Vasquez-Rifo A, Gagné D,
Paquet ER, Zetka M, Robert C, Masson JY and Simard MJ: The microRNA
pathway controls germ cell proliferation and differentiation in C.
elegans. Cell Res. 22:1034–1045. 2012. View Article : Google Scholar
|
21
|
Zhang Z, Zhang C, Li F, Zhang B and Zhang
Y: Regulation of memory CD8+ T cell differentiation by
microRNAs. Cell Physiol Biochem. 47:2187–2198. 2018. View Article : Google Scholar
|
22
|
Fu X, He Y, Wang X, Peng D, Chen X, Li X
and Wan Q: MicroRNA-16 promotes ovarian granulosa cell
proliferation and suppresses apoptosis through targeting PDCD4 in
polycystic ovarian syndrome. Cell Physiol Biochem. 48:670–682.
2018. View Article : Google Scholar
|
23
|
Li J, Zhou Q, Liang Y, Pan W, Bei Y, Zhang
Y, Wang J and Jiao Z: miR-486 inhibits PM2.5-induced apoptosis and
oxidative stress in human lung alveolar epithelial A549 cells. Ann
Transl Med. 6:209–218. 2018. View Article : Google Scholar
|
24
|
Li H, Feng C and Shi S: miR-196b promotes
lung cancer cell migration and invasion through the targeting of
GATA6. Oncol Lett. 16:247–252. 2018.
|
25
|
Maemura K, Watanabe K, Ando T, Hiyama N,
Sakatani T, Amano Y, Kage H, Nakajima J, Yatomi Y, Nagase T, et al:
Altered editing level of microRNAs is a potential biomarker in lung
adenocarcinoma. Cancer Sci. 109:3326–3335. 2018. View Article : Google Scholar
|
26
|
Ulivi P and Zoli W: miRNAs as non-invasive
biomarkers for lung cancer diagnosis. Molecules. 19:8220–8237.
2014. View Article : Google Scholar
|
27
|
Yong-Hao Y, Xian-Guo W, Ming X and
Jin-Ping Z: Expression and clinical significance of miR-139-5p in
non-small cell lung cancer. J Int Med Res. 47:867–874. 2019.
View Article : Google Scholar
|
28
|
Sun C, Sang M, Li S, Sun X, Yang C, Xi Y,
Wang L, Zhang F, Bi Y, Fu Y, et al: Hsa-miR-139-5p inhibits
proliferation and causes apoptosis associated with down-regulation
of c-Met. Oncotarget. 6:39756–39792. 2015. View Article : Google Scholar
|
29
|
Wang K, Jin J, Ma T and Zhai H: MiR-139-5p
inhibits the tumorigenesis and progression of oral squamous
carcinoma cells by targeting HOXA9. J Cell Mol Med. 21:3730–3740.
2017. View Article : Google Scholar
|
30
|
Li Q, Liang X, Wang Y, Meng X, Xu Y, Cai
S, Wang Z, Liu J and Cai G: miR-139-5p inhibits the
epithelial-mesenchymal transition and enhances the chemotherapeutic
sensitivity of colorectal cancer cells by downregulating BCL2. Sci
Rep. 6:271572016. View Article : Google Scholar
|
31
|
Xu W, Hang M, Yuan CY, Wu FL, Chen SB and
Xue K: MicroRNA-139-5p inhibits cell proliferation and invasion by
targeting insulin-like growth factor 1 receptor in human non-small
cell lung cancer. Int J Clin Exp Pathol. 8:3864–3870. 2015.
|
32
|
Clemenceau A, Boucherat O, Landry-Truchon
K, Lamontagne M, Biarde S, Joubert P, Gobeil S, Secco B, Laplante
M, Morissette M, et al: Lung cancer susceptibility genetic variants
modulate HOXB2 expression in the lung. Int J Dev Biol. 62:857–864.
2018. View Article : Google Scholar
|
33
|
Liu J, Li S, Cheng X, Du P, Yang Y and
Jiang WG: HOXB2 is a putative tumour promoter in human bladder
cancer. Anticancer Res. 39:6915–6921. 2019. View Article : Google Scholar
|
34
|
Li S, Pei Y, Wang W, Liu F, Zheng K and
Zhang X: Circular RNA 0001785 regulates the pathogenesis of
osteosarcoma as a ceRNA by sponging miR-1200 to upregulate HOXB2.
Cell Cycle. 18:1281–1291. 2019. View Article : Google Scholar
|
35
|
Lindblad O, Chougule RA, Moharram SA,
Kabir NN, Sun J, Kazi JU and Rönnstrand L: The role of HOXB2 and
HOXB3 in acute myeloid leukemia. Biochem Biophys Res Commun.
467:742–747. 2015. View Article : Google Scholar
|
36
|
Inamura K, Togashi Y, Ninomiya H, Shimoji
T, Noda T and Ishikawa Y: HOXB2, an adverse prognostic indicator
for stage I lung adenocarcinomas, promotes invasion by
transcriptional regulation of metastasis-related genes in HOP-62
non-small cell lung cancer cells. Anticancer Res. 28:2121–2127.
2008.
|
37
|
Inamura K, Togashi Y, Okui M, Ninomiya H,
Hiramatsu M, Satoh Y, Okumura S, Nakagawa K, Shimoji T, Noda T, et
al: HOXB2 as a novel prognostic indicator for stage I lung
adenocarcinomas. J Thorac Oncol. 2:802–807. 2007. View Article : Google Scholar
|
38
|
Xiao H, Liu Y, Liang P, Wang B, Tan H,
Zhang Y, Gao X and Gao J: TP53TG1 enhances cisplatin sensitivity of
non-small cell lung cancer cells through regulating miR-18a/PTEN
axis. Cell Biosci. 8:232018. View Article : Google Scholar
|
39
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
40
|
Agarwal V, Bell GW, Nam JW and Bartel DP:
Predicting effective microRNA target sites in mammalian mRNAs.
eLife. 4:e050052015. View Article : Google Scholar
|
41
|
Guo J, Jin D, Wu Y, Yang L, Du J, Gong K,
Chen W, Dai J, Miao S and Xi S: The miR 495-UBE2C-ABCG2/ERCC1 axis
reverses cisplatin resistance by downregulating drug resistance
genes in cisplatin-resistant non-small cell lung cancer cells.
EBioMedicine. 35:204–221. 2018. View Article : Google Scholar
|
42
|
Hou Z, Xu C, Xie H, Xu H, Zhan P, Yu L and
Fang X: Long noncoding RNAs expression patterns associated with
chemo response to cisplatin based chemotherapy in lung squamous
cell carcinoma patients. PLoS One. 9:e1081332014. View Article : Google Scholar
|
43
|
Donzelli S, Mori F, Biagioni F, Bellissimo
T, Pulito C, Muti P, Strano S and Blandino G: MicroRNAs: Short
non-coding players in cancer chemoresistance. Mol Cell Ther.
2:162014. View Article : Google Scholar
|
44
|
Wang Z, Wang N, Liu P, Chen Q, Situ H, Xie
T, Zhang J, Peng C, Lin Y and Chen J: MicroRNA-25 regulates
chemoresistance-associated autophagy in breast cancer cells, a
process modulated by the natural autophagy inducer
isoliquiritigenin. Oncotarget. 5:7013–7026. 2014. View Article : Google Scholar
|
45
|
Ju J: Implications of miRNAs in colorectal
cancer chemoresistance. Int Drug Discov. 2011:20112011.
|
46
|
Wang XH, Lu H, Li TS, Yu Y, Liu G, Peng X
and Zhao JH: KLF8 induces breast stemness and chemoresistance via
miRNAs associated with EMT. Mol Cancer Ther. 12:A100. 2013.
|
47
|
Carta A, Chetcuti R and Ayers D: An
introspective update on the influence of miRNAs in breast carcinoma
and neuroblastoma chemoresistance. Genet Res Int.
2014:7430502014.
|
48
|
Shen K, Mao R, Ma L, Li Y, Qiu Y, Cui D,
Le V, Yin P, Ni L and Liu J: Post-transcriptional regulation of the
tumor suppressor miR-139-5p and a network of miR-139-5p-mediated
mRNA interactions in colorectal cancer. FEBS J. 281:3609–3624.
2014. View Article : Google Scholar
|
49
|
Chen Y, Cao XY, Li YN, Qiu YY, Li YN, Li W
and Wang H: Reversal of cisplatin resistance by
microRNA-139-5p-independent RNF2 downregulation and MAPK inhibition
in ovarian cancer. Am J Physiol Cell Physiol. 315:C225–C235. 2018.
View Article : Google Scholar
|
50
|
Ni H, Dai X, Leng X, Deng M, Qin Y, Ji Q,
Xu C, Li J and Liu Y: Higher variety and quantity of
microRNA-139-5p isoforms confer suppressive role in hepatocellular
carcinoma. J Cell Biochem. 119:6806–6813. 2018. View Article : Google Scholar
|
51
|
Yue S, Wang L, Zhang H, Min Y, Lou Y, Sun
H, Jiang Y, Zhang W, Liang A, Guo Y, et al: miR-139-5p suppresses
cancer cell migration and invasion through targeting ZEB1 and ZEB2
in GBM. Tumour Biol. 36:6741–6749. 2015. View Article : Google Scholar
|
52
|
Hua S, Lei L, Deng L, Weng X, Liu C, Qi X,
Wang S, Zhang D, Zou X, Cao C, et al: miR-139-5p inhibits aerobic
glycolysis, cell proliferation, migration, and invasion in
hepatocellular carcinoma via a reciprocal regulatory interaction
with ETS1. Oncogene. 37:1624–1636. 2018. View Article : Google Scholar
|
53
|
Liu H, Yin Y, Hu Y, Feng Y, Bian Z, Yao S,
Li M, You Q and Huang Z: miR-139-5p sensitizes colorectal cancer
cells to 5-fluorouracil by targeting NOTCH-1. Pathol Res Pract.
212:643–649. 2016. View Article : Google Scholar
|
54
|
Pajic M, Froio D, Daly S, Doculara L,
Millar E, Graham PH, Drury A, Steinmann A, de Bock CE,
Boulghourjian A, et al: miR-139-5p modulates radiotherapy
resistance in breast cancer by repressing multiple gene networks of
DNA repair and ROS defense. Cancer Res. 78:501–515. 2018.
View Article : Google Scholar
|
55
|
Boimel PJ, Cruz C and Segall JE: A
functional in vivo screen for regulators of tumor progression
identifies HOXB2 as a regulator of tumor growth in breast cancer.
Genomics. 98:164–172. 2011. View Article : Google Scholar
|
56
|
Wang Y, Wang H, Song T, Zou Y, Jiang J,
Fang L and Li P: HOTAIR is a potential target for the treatment of
cisplatin resistant ovarian cancer. Mol Med Rep. 12:2211–2216.
2015. View Article : Google Scholar
|
57
|
Sellar GC, Watt KP, Li L, Nelkin BD,
Rabiasz GJ, Porteous DJ, Smyth JF and Gabra H: The homeobox gene
BARX2 can modulate cisplatin sensitivity in human epithelial
ovarian cancer. Int J Oncol. 21:929–933. 2002.
|
58
|
Gonzalez-Herrera A, Salgado-Bernabe M,
Velazquez-Velazquez C, Salcedo-Vargas M, Andrade-Manzano A,
Avila-Moreno F and Pina-Sanchez P: Increased expression of HOXB2
and HOXB13 proteins is associated with HPV infection and cervical
cancer progression. Asian Pac J Cancer Prev. 16:1349–1353. 2015.
View Article : Google Scholar
|
59
|
Liu J, Li C, Jiang Y, Wan Y, Zhou S and
Cheng W: Tumor-suppressor role of miR-139-5p in endometrial cancer.
Cancer Cell Int. 18:512018. View Article : Google Scholar
|
60
|
Danielsen SA, Eide PW, Nesbakken A, Guren
T, Leithe E and Lothe RA: Portrait of the PI3K/AKT pathway in
colorectal cancer. Biochim Biophys Acta. 1855:104–121. 2015.
|
61
|
Catanzaro G, Besharat ZM, Miele E,
Chiacchiarini M, Po A, Carai A, Marras CE, Antonelli M, Badiali M,
Raso A, et al: The miR-139-5p regulates proliferation of
supratentorial paediatric low-grade gliomas by targeting the
PI3K/AKT/mTORC1 signalling. Neuropathol Appl Neurobiol. 44:687–706.
2018. View Article : Google Scholar
|
62
|
Cai Y, Tan X, Liu J, Shen Y, Wu D, Ren M,
Huang P and Yu D: Inhibition of PI3K/Akt/mTOR signaling pathway
enhances the sensitivity of the SKOV3/DDP ovarian cancer cell line
to cisplatin in vitro. Chin J Cancer Res. 26:564–572. 2014.
|
63
|
Cao W, Yang W, Fan R, Li H, Jiang J, Geng
M, Jin Y and Wu Y: miR-34a regulates cisplatin-induce gastric
cancer cell death by modulating PI3K/AKT/survivin pathway. Tumour
Biol. 35:1287–1295. 2014. View Article : Google Scholar
|
64
|
Chen J, Lan T, Zhang W, Dong L, Kang N, Fu
M, Liu B, Liu K, Zhang C, Hou J, et al: Dasatinib enhances
cisplatin sensitivity in human esophageal squamous cell carcinoma
(ESCC) cells via suppression of PI3K/AKT and Stat3 pathways. Arch
Biochem Biophys. 575:38–45. 2015. View Article : Google Scholar
|