1
|
Lu C, Huang X, Zhang X, Roensch K, Cao Q,
Nakayama KI, Blazar BR, Zeng Y and Zhou X: miR-221 and miR-155
regulate human dendritic cell development, apoptosis, and IL-12
production through targeting of p27kip1, KPC1, and SOCS-1. Blood.
117:4293–4303. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
Takenaka MC and Quintana FJ: Tolerogenic
dendritic cells. Semin Immunopathol. 39:113–120. 2017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Dhodapkar MV, Steinman RM, Krasovsky J,
Munz C and Bhardwaj N: Antigen-specific inhibition of effector T
cell function in humans after injection of immature dendritic
cells. J Exp Med. 193:233–238. 2001. View Article : Google Scholar : PubMed/NCBI
|
4
|
Ma B, Yang JY, Song WJ, Ding R, Zhang ZC,
Ji HC, Zhang X, Wang JL, Yang XS, Tao KS, et al: Combining exosomes
derived from immature DCs with donor antigen-specific treg cells
induces tolerance in a rat liver allograft model. Sci Rep.
6:329712016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Pêche H, Heslan M, Usal C, Amigorena S and
Cuturi MC: Presentation of donor major histocompatibility complex
antigens by bone marrow dendritic cell-derived exosomes modulates
allograft rejection. Transplantation. 76:1503–1510. 2003.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Gao W, Liu H, Yuan J, Wu C, Huang D, Ma Y,
Zhu J, Ma L, Guo J, Shi H, et al: Exosomes derived from mature
dendritic cells increase endothelial inflammation and
atherosclerosis via membrane TNF-α mediated NF-κB pathway. J Cell
Mol Med. 20:2318–2327. 2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Thery C, Ostrowski M and Segura E:
Membrane vesicles as conveyors of immune responses. Nat Rev
Immunol. 9:581–593. 2009. View
Article : Google Scholar : PubMed/NCBI
|
8
|
Hao S, Yuan J and Xiang J: Nonspecific
CD4(+) T cells with uptake of antigen-specific dendritic
cell-released exosomes stimulate antigen-specific CD8(+) CTL
responses and long-term T cell memory. J Leukoc Biol. 82:829–838.
2007. View Article : Google Scholar : PubMed/NCBI
|
9
|
Kowal J, Arras G, Colombo M, Jouve M,
Morath JP, Primdal-Bengtson B, Dingli F, Loew D, Tkach M and Théry
C: Proteomic comparison defines novel markers to characterize
heterogeneous populations of extracellular vesicle subtypes. Proc
Natl Acad Sci USA. 113:E968–E977. 2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Rinn JL and Chang HY: Genome regulation by
long noncoding RNAs. Annu Rev Biochem. 81:145–166. 2012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Militello G, Weirick T, John D, Doring C,
Dimmeler S and Uchida S: Screening and validation of lncRNAs and
circRNAs as miRNA sponges. Brief Bioinform. 18:780–788.
2017.PubMed/NCBI
|
12
|
Fatica A and Bozzoni I: Long non-coding
RNAs: New players in cell differentiation and development. Nat Rev
Genet. 15:7–21. 2014. View
Article : Google Scholar : PubMed/NCBI
|
13
|
Ponting CP, Oliver PL and Reik W:
Evolution and functions of long noncoding RNAs. Cell. 136:629–641.
2009. View Article : Google Scholar : PubMed/NCBI
|
14
|
Bao X, Zhang Q, Liu N, Zhuang S, Li Z,
Meng Q, Sun H, Bai J, Zhou X and Tang L: Characteristics of
circular RNA expression of pulmonary macrophages in mice with
sepsis-induced acute lung injury. J Cell Mol Med. 23:7111–7115.
2019. View Article : Google Scholar : PubMed/NCBI
|
15
|
Luo Z, Mao X and Cui W: Circular RNA
expression and circPTPRM promotes proliferation and migration in
hepatocellular carcinoma. Med Oncol. 36:862019. View Article : Google Scholar : PubMed/NCBI
|
16
|
Sheng F, Sun N, Ji Y, Ma Y, Ding H, Zhang
Q, Yang F and Li W: Aberrant expression of imprinted lncRNA MEG8
causes trophoblast dysfunction and abortion. J Cell Biochem.
120:17378–17390. 2019. View Article : Google Scholar : PubMed/NCBI
|
17
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Huang da W, Sherman BT and Lempicki RA:
Systematic and integrative analysis of large gene lists using DAVID
bioinformatics resources. Nat Protoc. 4:44–57. 2009. View Article : Google Scholar : PubMed/NCBI
|
19
|
Huang da W, Sherman BT and Lempicki RA:
Bioinformatics enrichment tools: Paths toward the comprehensive
functional analysis of large gene lists. Nucleic Acids Res.
37:1–13. 2009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Xiao B, Zhang W, Chen L, Hang J, Wang L,
Zhang R, Liao Y, Chen J, Ma Q, Sun Z and Li L: Analysis of the
miRNA-mRNA-lncRNA network in human estrogen receptor-positive and
estrogen receptor-negative breast cancer based on TCGA data. Gene.
658:28–35. 2018. View Article : Google Scholar : PubMed/NCBI
|
21
|
An T, Zhang J, Ma Y, Lian J, Wu YX, Lv BH,
Ma MH, Meng JH, Zhou YT, Zhang ZY, et al: Relationships of
Non-coding RNA with diabetes and depression. Sci Rep. 9:107072019.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Enright AJ, John B, Gaul U, Tuschl T,
Sander C and Marks DS: MicroRNA targets in drosophila. Genome Biol.
5:R12003. View Article : Google Scholar : PubMed/NCBI
|
23
|
Dweep H and Gretz N: miRWalk2.0: A
comprehensive atlas of microRNA-target interactions. Nat Methods.
12:6972015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Shannon P, Markiel A, Ozier O, Baliga NS,
Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A
software environment for integrated models of biomolecular
interaction networks. Genome Res. 13:2498–2504. 2003. View Article : Google Scholar : PubMed/NCBI
|
25
|
Zhang K, Li Q, Kang X, Wang Y and Wang S:
Identification and functional characterization of lncRNAs acting as
ceRNA involved in the malignant progression of glioblastoma
multiforme. Oncol Rep. 36:2911–2925. 2016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Pitt JM, Andre F, Amigorena S, Soria JC,
Eggermont A, Kroemer G and Zitvogel L: Dendritic cell-derived
exosomes for cancer therapy. J Clin Invest. 126:1224–1232. 2016.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Monguio-Tortajada M, Lauzurica-Valdemoros
R and Borras FE: Tolerance in organ transplantation: From
conventional immunosuppression to extracellular vesicles. Front
Immunol. 5:4162014.PubMed/NCBI
|
28
|
Peche H, Renaudin K, Beriou G, Merieau E,
Amigorena S and Cuturi MC: Induction of tolerance by exosomes and
short-term immunosuppression in a fully MHC-mismatched rat cardiac
allograft model. Am J Transplant. 6:1541–1550. 2006. View Article : Google Scholar : PubMed/NCBI
|
29
|
Zitvogel L, Regnault A, Lozier A, Wolfers
J, Flament C, Tenza D, Ricciardi-Castagnoli P, Raposo G and
Amigorena S: Eradication of established murine tumors using a novel
cell-free vaccine: Dendritic cell-derived exosomes. Nat Med.
4:594–600. 1998. View Article : Google Scholar : PubMed/NCBI
|
30
|
Zhu B, Zhang L, Liang C, Liu B, Pan X,
Wang Y, Zhang Y, Zhang Y, Xie W, Yan B, et al: Stem cell-derived
exosomes prevent aging-induced cardiac dysfunction through a novel
exosome/lncRNA MALAT1/NF-κB/TNF-α signaling pathway. Oxid Med Cell
Longev. 2019:97392582019. View Article : Google Scholar : PubMed/NCBI
|
31
|
Dong H, Wang W, Chen R, Zhang Y, Zou K, Ye
M, He X, Zhang F and Han J: Exosome-mediated transfer of
lncRNA-SNHG14 promotes trastuzumab chemoresistance in breast
cancer. Int J Oncol. 53:1013–1026. 2018.PubMed/NCBI
|
32
|
Seif F, Khoshmirsafa M, Aazami H,
Mohsenzadegan M, Sedighi G and Bahar M: The role of JAK-STAT
signaling pathway and its regulators in the fate of T helper cells.
Cell Commun Signal. 15:232017. View Article : Google Scholar : PubMed/NCBI
|
33
|
Pedros C, Altman A and Kong KF: Role of
TRAFs in signaling pathways controlling T follicular helper cell
differentiation and T cell-dependent antibody responses. Front
Immunol. 9:24122018. View Article : Google Scholar : PubMed/NCBI
|
34
|
Kishi Y, Kondo T, Xiao S, Yosef N,
Gaublomme J, Wu C, Wang C, Chihara N, Regev A, Joller N and Kuchroo
VK: Protein C receptor (PROCR) is a negative regulator of Th17
pathogenicity. J Exp Med. 213:2489–2501. 2016. View Article : Google Scholar : PubMed/NCBI
|
35
|
Iborra S, Martínez-López M, Cueto FJ,
Conde-Garrosa R, Del Fresno C, Izquierdo HM, Abram CL, Mori D,
Campos-Martín Y, Reguera RM, et al: Leishmania uses mincle to
target an inhibitory ITAM signaling pathway in dendritic cells that
dampens adaptive immunity to infection. Immunity. 45:788–801. 2016.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Hernandez JB, Chang C, LeBlanc M, Grimm D,
Le Lay J, Kaestner KH, Zheng Y and Montminy M: The CREB/CRTC2
pathway modulates autoimmune disease by promoting Th17
differentiation. Nat Commun. 6:72162015. View Article : Google Scholar : PubMed/NCBI
|
37
|
Yamasaki S, Ishikawa E, Sakuma M, Hara H,
Ogata K and Saito T: Mincle is an ITAM-coupled activating receptor
that senses damaged cells. Nat Immunol. 9:1179–1188. 2008.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Ha H, Han D and Choi Y: TRAF-mediated
TNFR-family signaling. Curr Protoc Immunol. 11:Unit11 19D.
2009.PubMed/NCBI
|
39
|
Wang C, McPherson AJ, Jones RB, Kawamura
KS, Lin GHY, Lang PA, Ambagala T, Pellegrini M, Calzascia T,
Aidarus N, et al: Loss of the signaling adaptor TRAF1 causes
CD8+ T cell dysregulation during human and murine
chronic infection. J Exp Med. 209:77–91. 2012. View Article : Google Scholar : PubMed/NCBI
|
40
|
Abdul-Sater AA, Edilova MI, Clouthier DL,
Mbanwi A, Kremmer E and Watts TH: The signaling adaptor TRAF1
negatively regulates Toll-like receptor signaling and this
underlies its role in rheumatic disease. Nat Immunol. 18:26–35.
2017. View Article : Google Scholar : PubMed/NCBI
|
41
|
Chen Y, Yu M, Zheng Y, Fu G, Xin G, Zhu W,
Luo L, Burns R, Li QZ, Dent AL, et al: CXCR5(+)PD-1(+) follicular
helper CD8 T cells control B cell tolerance. Nat Commun.
10:44152019. View Article : Google Scholar : PubMed/NCBI
|
42
|
Bishop GA, Stunz LL and Hostager BS: TRAF3
as a multifaceted regulator of B lymphocyte survival and
activation. Front Immunol. 9:21612018. View Article : Google Scholar : PubMed/NCBI
|
43
|
Mellor AL and Munn DH: IDO expression by
dendritic cells: Tolerance and tryptophan catabolism. Nat Rev
Immunol. 4:762–774. 2004. View Article : Google Scholar : PubMed/NCBI
|