1
|
Umanath K and Lewis JB: Update on diabetic
nephropathy: Core curriculum 2018. Am J Kidney Dis. 71:884–895.
2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Skov J, Christiansen JS and Poulsen PL:
Hypertension and diabetic nephropathy. Endocr Dev. 31:97–107. 2016.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Sharma N, Malek V, Mulay SR and Gaikwad
AB: Angiotensin II type 2 receptor and angiotensin-converting
enzyme 2 mediate ischemic renal injury in diabetic and non-diabetic
rats. Life Sci. 235:1167962019. View Article : Google Scholar : PubMed/NCBI
|
4
|
Urushihara M and Kagami S: Role of the
intrarenal renin-angiotensin system in the progression of renal
disease. Pediatr Nephrol. 32:1471–1479. 2017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Kaliappan G, Nagarajan P, Moorthy R, Kalai
Gana Selvi S, Avinash Raj T and Mahesh Kumar J: Ang II induce
kidney damage by recruiting inflammatory cells and up regulates
PPAR gamma and Renin 1 gene: Effect of β carotene on chronic renal
damage. J Thromb Thrombolysis. 36:277–285. 2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Kelly TN, Raj D, Rahman M, Kretzler M,
Kallem RR, Ricardo AC, Rosas SE, Tao K, Xie D, Hamm LL, et al CRIC
Study Investigators, : The role of renin-angiotensin-aldosterone
system genes in the progression of chronic kidney disease: Findings
from the Chronic Renal Insufficiency Cohort (CRIC) study. Nephrol
Dial Transplant. 30:1711–1718. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Kuksal N, Chalker J and Mailloux RJ:
Progress in understanding the molecular oxygen paradox - function
of mitochondrial reactive oxygen species in cell signaling. Biol
Chem. 398:1209–1227. 2017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Liu Y, Shi B, Li Y and Zhang H: Protective
Effect of Luteolin Against renal ischemia/reperfusion injury via
modulation of pro-inflammatory cytokines, oxidative stress and
apoptosis for possible benefit in kidney transplant. Med Sci Monit.
23:5720–5727. 2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Tanida I: Autophagy basics. Microbiol
Immunol. 55:1–11. 2011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Guan X, Qian Y, Shen Y, Zhang L, Du Y, Dai
H, Qian J and Yan Y: Autophagy protects renal tubular cells against
ischemia/reperfusion injury in a time-dependent manner. Cell
Physiol Biochem. 36:285–298. 2015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Imran M, Rauf A, Abu-Izneid T, Nadeem M,
Shariati MA, Khan IA, Imran A, Erdogan Orhan I, Rizwan M, Atif M,
et al: Corrigendum to ‘Luteolin, a flavonoid, as an anticancer
agent: A review’ [Biomed. Pharmacother. 112 (2019) 108612]. Biomed
Pharmacother. 116:1090842019. View Article : Google Scholar : PubMed/NCBI
|
12
|
Luo Y, Shang P and Li D: Luteolin: A
flavonoid that has multiple cardio-protective effects and its
molecular mechanisms. Front Pharmacol. 8:6922017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Hong X, Zhao X, Wang G, Zhang Z, Pei H and
Liu Z: Luteolin treatment protects against renal
ischemia-reperfusion injury in rats. Mediators Inflamm.
2017:97838932017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Xin SB, Yan H, Ma J, Sun Q and Shen L:
Protective effects of luteolin on lipopolysaccharide-induced acute
renal injury in mice. Med Sci Monit. 22:5173–5180. 2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Sung J and Lee J: Anti-inflammatory
activity of Butein and Luteolin through suppression of NFκB
activation and induction of heme oxygenase-1. J Med Food.
18:557–564. 2015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Choi JS, Islam MN, Ali MY, Kim YM, Park
HJ, Sohn HS and Jung HA: The effects of C-glycosylation of luteolin
on its antioxidant, anti-Alzheimer's disease, anti-diabetic, and
anti-inflammatory activities. Arch Pharm Res. 37:1354–1363. 2014.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Seelinger G, Merfort I, Wölfle U and
Schempp CM: Anti-carcinogenic effects of the flavonoid luteolin.
Molecules. 13:2628–2651. 2008. View Article : Google Scholar : PubMed/NCBI
|
18
|
Domitrović R, Cvijanović O, Pugel EP,
Zagorac GB, Mahmutefendić H and Škoda M: Luteolin ameliorates
cisplatin-induced nephrotoxicity in mice through inhibition of
platinum accumulation, inflammation and apoptosis in the kidney.
Toxicology. 310:115–123. 2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Kang KP, Park SK, Kim DH, Sung MJ, Jung
YJ, Lee AS, Lee JE, Ramkumar KM, Lee S, Park MH, et al: Luteolin
ameliorates cisplatin-induced acute kidney injury in mice by
regulation of p53-dependent renal tubular apoptosis. Nephrol Dial
Transplant. 26:814–822. 2011. View Article : Google Scholar : PubMed/NCBI
|
20
|
Honjo T, Chyu KY, Dimayuga PC, Lio WM,
Yano J, Trinidad P, Zhao X, Zhou J, Cercek B and Shah PK:
Immunization with an ApoB-100 related peptide vaccine attenuates
angiotensin-II induced hypertension and renal fibrosis in mice.
PLoS One. 10:e01317312015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Cha J, Ivanov V, Ivanova S, Kalinovsky T,
Rath M and Niedzwiecki A: Evolution of angiotensin II-mediated
atherosclerosis in ApoE KO mice. Mol Med Rep. 3:565–570.
2010.PubMed/NCBI
|
22
|
Xu Y, Zhang J, Liu J, Sai Li, Cheng Li,
Wang W, Ma R and Liu Y: Luteolin attenuate the D-galactose-induced
renal damage by attenuation of oxidative stress and inflammation.
Nat Prod Res. 29:1078–1082. 2015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhang W, Wang W, Yu H, Zhang Y, Dai Y,
Ning C, Tao L, Sun H, Kellems RE, Blackburn MR, et al: Interleukin
6 underlies angiotensin II-induced hypertension and chronic renal
damage. Hypertension. 59:136–144. 2012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhong J, Guo D, Chen CB, Wang W, Schuster
M, Loibner H, Penninger JM, Scholey JW, Kassiri Z and Oudit GY:
Prevention of angiotensin II-mediated renal oxidative stress,
inflammation, and fibrosis by angiotensin-converting enzyme 2.
Hypertension. 57:314–322. 2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
National Research Council (US): Committee
for the Update of the Guide for the Care and Use of Laboratory
Animals. 8th edition. National Academies Press; Washington, DC:
2011
|
26
|
Shingu C, Koga H, Hagiwara S, Matsumoto S,
Goto K, Yokoi I and Noguchi T: Hydrogen-rich saline solution
attenuates renal ischemia-reperfusion injury. J Anesth. 24:569–574.
2010. View Article : Google Scholar : PubMed/NCBI
|
27
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Domitrović R, Jakovac H, Tomac J and Sain
I: Liver fibrosis in mice induced by carbon tetrachloride and its
reversion by luteolin. Toxicol Appl Pharmacol. 241:311–321. 2009.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Chen CY, Peng WH, Wu LC, Wu CC and Hsu SL:
Luteolin ameliorates experimental lung fibrosis both in vivo and in
vitro: Implications for therapy of lung fibrosis. J Agric Food
Chem. 58:11653–11661. 2010. View Article : Google Scholar : PubMed/NCBI
|
30
|
Chen J, Shetty S, Zhang P, Gao R, Hu Y,
Wang S, Li Z and Fu J: Aspirin-triggered resolvin D1 down-regulates
inflammatory responses and protects againstendotoxin-induced acute
kidney injury. Toxicol Appl Pharmacol. 277:118–123. 2014.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Seelinger G, Merfort I and Schempp CM:
Anti-oxidant, anti-inflammatory and anti-allergic activities of
luteolin. Planta Med. 74:1667–1677. 2008. View Article : Google Scholar : PubMed/NCBI
|
32
|
Okusa MD: The inflammatory cascade in
acute ischemic renal failure. Nephron. 90:133–138. 2002. View Article : Google Scholar : PubMed/NCBI
|
33
|
Hashmat S, Rudemiller N, Lund H,
Abais-Battad JM, Van Why S and Mattson DL: Interleukin-6 inhibition
attenuates hypertension and associated renal damage in Dahl
salt-sensitive rats. Am J Physiol Renal Physiol. 311:F555–F561.
2016. View Article : Google Scholar : PubMed/NCBI
|
34
|
Levine B and Kroemer G: Autophagy in the
pathogenesis of disease. Cell. 132:27–42. 2008. View Article : Google Scholar : PubMed/NCBI
|
35
|
Corrochano S, Renna M, Tomas-Zapico C,
Brown SD, Lucas JJ, Rubinsztein DC and Acevedo-Arozena A:
α-synuclein levels affect autophagosome numbers in vivo and
modulate Huntington disease pathology. Autophagy. 8:431–432. 2012.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Eskelinen EL and Saftig P: Autophagy: A
lysosomal degradation pathway with a central role in health and
disease. Biochim Biophys Acta. 1793:664–673. 2009. View Article : Google Scholar : PubMed/NCBI
|
37
|
Virgin HW and Levine B: Autophagy genes in
immunity. Nat Immunol. 10:461–470. 2009. View Article : Google Scholar : PubMed/NCBI
|
38
|
Luciani A, Villella VR, Esposito S,
Brunetti-Pierri N, Medina D, Settembre C, Gavina M, Pulze L,
Giardino I, Pettoello-Mantovani M, et al: Defective CFTR induces
aggresome formation and lung inflammation in cystic fibrosis
through ROS-mediated autophagy inhibition. Nat Cell Biol.
12:863–875. 2010. View Article : Google Scholar : PubMed/NCBI
|
39
|
He L, Livingston MJ and Dong Z: Autophagy
in acute kidney injury and repair. Nephron Clin Pract. 127:56–60.
2014. View Article : Google Scholar : PubMed/NCBI
|
40
|
Schmitz KJ, Ademi C, Bertram S, Schmid KW
and Baba HA: Prognostic relevance of autophagy-related markers LC3,
p62/sequestosome 1, Beclin-1 and ULK1 in colorectal cancer patients
with respect to KRAS mutational status. World J Surg Oncol.
14:1892016. View Article : Google Scholar : PubMed/NCBI
|
41
|
Lee YK, Jun YW, Choi HE, Huh YH, Kaang BK,
Jang DJ and Lee JA: Development of LC3/GABARAP sensors containing a
LIR and a hydrophobic domain to monitor autophagy. EMBO J.
36:1100–1116. 2017. View Article : Google Scholar : PubMed/NCBI
|
42
|
Schläfli AM, Berezowska S, Adams O, Langer
R and Tschan MP: Reliable LC3 and p62 autophagy marker detection in
formalin fixed paraffin embedded human tissue by
immunohistochemistry. Eur J Histochem. 59:24812015. View Article : Google Scholar : PubMed/NCBI
|
43
|
Kabeya Y, Mizushima N, Ueno T, Yamamoto A,
Kirisako T, Noda T, Kominami E, Ohsumi Y and Yoshimori T: LC3, a
mammalian homologue of yeast Apg8p, is localized in autophagosome
membranes after processing. EMBO J. 19:5720–5728. 2000. View Article : Google Scholar : PubMed/NCBI
|
44
|
Jin Z, Li Y, Pitti R, Lawrence D, Pham VC,
Lill JR and Ashkenazi A: Cullin3-based polyubiquitination and
p62-dependent aggregation of caspase-8 mediate extrinsic apoptosis
signaling. Cell. 137:721–735. 2009. View Article : Google Scholar : PubMed/NCBI
|
45
|
Schläfli AM, Adams O, Galván JA, Gugger M,
Savic S, Bubendorf L, Schmid RA, Becker KF, Tschan MP, Langer R, et
al: Prognostic value of the autophagy markers LC3 and p62/SQSTM1 in
early-stage non-small cell lung cancer. Oncotarget. 7:39544–39555.
2016. View Article : Google Scholar : PubMed/NCBI
|