1
|
Cho MI and Garant PR: Development and
general structure of the periodontium. Periodontology 2000.
24:9–27. 2000. View Article : Google Scholar : PubMed/NCBI
|
2
|
Luan X, Zhou X, Trombetta-eSilva J,
Francis M, Gaharwar AK, Atsawasuwan P and Diekwisch TGH: MicroRNAs
and periodontal homeostasis. J Dent Res. 96:491–500. 2017.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Mombelli A: Microbial colonization of the
periodontal pocket and its significance for periodontal therapy.
Periodontology 2000. 76:85–96. 2018. View Article : Google Scholar : PubMed/NCBI
|
4
|
Wang J, Massoudi D, Ren Y, Muir AM, Harris
SE, Greenspan DS and Feng JQ: BMP1 and TLL1 are required for
maintaining periodontal homeostasis. J Dent Res. 96:578–585. 2017.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Fujita A, Morimatsu M, Nishiyama M, Naruse
K and Takashiba S: Mechanical stress modulates the homeostasis of
periodontal ligament. Mol Biol Cell. 29:12018.PubMed/NCBI
|
6
|
Li J, Ke X, Yan F, Lei L and Li H:
Necroptosis in the periodontal homeostasis: Signals emanating from
dying cells. Oral Dis. 24:900–907. 2018. View Article : Google Scholar : PubMed/NCBI
|
7
|
Jin Y, Liu DX and Lin XP: IL-35 may
maintain homeostasis of the immune microenvironment in
periodontitis. Exp Ther Med. 14:5605–5610. 2017.PubMed/NCBI
|
8
|
Xie X, Wang J, Wang K, Li C, Zhang S, Jing
D, Xu C, Wang X, Zhao H and Feng JQ: Axin2+-mesenchymal
PDL cells, instead of K14+ epithelial cells, play a key
role in rapid cementum growth. J Dent Res. 98:1262–1270. 2019.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Gavin BJ, McMahon JA and McMahon AP:
Expression of multiple novel Wnt-1/int-1-related genes during fetal
and adult mouse development. Genes Dev. 4:2319–2332. 1990.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Clark CC, Cohen I, Eichstetter I,
Cannizzaro LA, McPherson JD, Wasmuth JJ and Iozzo RV: Molecular
cloning of the human proto-oncogene Wnt-5A and mapping of the gene
(WNT5A) to chromosome 3p14-p21. Genomics. 18:249–260. 1993.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Bauer M, Bénard J, Gaasterland T, Willert
K and Cappellen D: WNT5A encodes two isoforms with distinct
functions in cancers. PLoS One. 8:e805262013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Kumawat K and Gosens R: WNT-5A: Signaling
and functions in health and disease. Cell Mol Life Sci. 73:567–587.
2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Butler MT and Wallingford JB: Planar cell
polarity in development and disease. Nat Rev Mol Cell Biol.
18:375–388. 2017. View Article : Google Scholar : PubMed/NCBI
|
14
|
De A: Wnt/Ca2+ signaling
pathway: A brief overview. Acta Biochim Biophys Sin (Shanghai).
43:745–756. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Niehrs C and Acebron SP: Mitotic and
mitogenic Wnt signalling. EMBO J. 31:2705–2713. 2012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wang D, Zhang Y and Shen C: Research
update on the association between SFRP5, an anti-inflammatory
adipokine, with obesity, type 2 diabetes mellitus and coronary
heart disease. J Cell Mol Med. 24:2730–2735. 2020. View Article : Google Scholar : PubMed/NCBI
|
17
|
Yamaguchi TP, Bradley A, McMahon AP and
Jones S: A Wnt5a pathway underlies outgrowth of multiple structures
in the vertebrate embryo. Development. 126:1211–1223.
1999.PubMed/NCBI
|
18
|
Bisson JA, Mills B, Paul Helt JC, Zwaka TP
and Cohen ED: Wnt5a and Wnt11 inhibit the canonical Wnt pathway and
promote cardiac progenitor development via the caspase-dependent
degradation of AKT. Dev Biol. 398:80–96. 2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Li CG, Xiao J, Hormi K, Borok Z and Minoo
P: Wnt5a participates in distal lung morphogenesis. Dev Biol.
248:68–81. 2002. View Article : Google Scholar : PubMed/NCBI
|
20
|
Pashirzad M, Shafiee M, Rahmani F,
Behnam-Rassouli R, Hoseinkhani F, Ryzhikov M, Moradi Binabaj M,
Parizadeh MR, Avan A and Hassanian SM: Role of Wnt5a in the
pathogenesis of inflammatory diseases. J Cell Physiol.
232:1611–1616. 2017. View Article : Google Scholar : PubMed/NCBI
|
21
|
Asem MS, Buechler S, Wates RB, Miller DL
and Stack MS: Wnt5a signaling in cancer. Cancers (Basel). 8:792016.
View Article : Google Scholar
|
22
|
Lin M, Li L, Liu C, Liu H, He F, Yan F,
Zhang Y and Chen Y: Wnt5a regulates growth, patterning, and
odontoblast differentiation of developing mouse tooth. Dev Dyn.
240:432–440. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Cai J, Mutoh N, Shin JO, Tani-Ishii N,
Ohshima H, Cho SW and Jung HS: Wnt5a plays a crucial role in
determining tooth size during murine tooth development. Cell Tissue
Res. 345:367–377. 2011. View Article : Google Scholar : PubMed/NCBI
|
24
|
Sarkar L and Sharpe PT: Expression of Wnt
signalling pathway genes during tooth development. Mech Dev.
85:197–200. 1999. View Article : Google Scholar : PubMed/NCBI
|
25
|
Peng L, Ren LB, Dong G, Wang CL, Xu P, Ye
L and Zhou XD: Wnt5a promotes differentiation of human dental
papilla cells. Int Endod J. 43:404–412. 2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Xiang L, Chen M, He L, Cai B, Du Y, Zhang
X, Zhou C, Wang C, Mao JJ and Ling J: Wnt5a regulates dental
follicle stem/progenitor cells of the periodontium. Stem Cell Res
Ther. 5:1352014. View
Article : Google Scholar : PubMed/NCBI
|
27
|
Hasegawa D, Wada N, Maeda H, Yoshida S,
Mitarai H, Tomokiyo A, Monnouchi S, Hamano S, Yuda A and Akamine A:
Wnt5a induces collagen production by human periodontal ligament
cells through TGFβ1-mediated upregulation of periostin expression.
J Cell Physiol. 230:2647–2660. 2015. View Article : Google Scholar : PubMed/NCBI
|
28
|
Fu HD, Wang BK, Wan ZQ, Lin H, Chang ML
and Han GL: Wnt5a mediated canonical Wnt signaling pathway
activation in orthodontic tooth movement: Possible role in the
tension force-induced bone formation. J Mol Histol. 47:455–466.
2016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Wu XS, Hu L, Li Y, Wang F, Ma P, Wang J,
Zhang C, Jiang C and Wang S: SCAPs regulate differentiation of
DFSCs during tooth root development in swine. Int J Med Sci.
15:291–299. 2018. View Article : Google Scholar : PubMed/NCBI
|
30
|
Sakisaka Y, Tsuchiya M, Nakamura T, Tamura
M, Shimauchi H and Nemoto E: Wnt5a attenuates Wnt3a-induced
alkaline phosphatase expression in dental follicle cells. Exp Cell
Res. 336:85–93. 2015. View Article : Google Scholar : PubMed/NCBI
|
31
|
Wise G: Cellular and molecular basis of
tooth eruption. Orthod Craniofac Res. 12:67–73. 2009. View Article : Google Scholar : PubMed/NCBI
|
32
|
Gopinathan G, Foyle D, Luan X and
Diekwisch TGH: The Wnt antagonist SFRP1: A key regulator of
periodontal mineral homeostasis. Stem Cells Dev. 28:1004–1014.
2019. View Article : Google Scholar : PubMed/NCBI
|
33
|
Rios HF, Ma D, Xie Y, Giannobile WV,
Bonewald LF, Conway SJ and Feng JQ: Periostin is essential for the
integrity and function of the periodontal ligament during occlusal
loading in mice. J Periodontol. 79:1480–1490. 2008. View Article : Google Scholar : PubMed/NCBI
|
34
|
Panchamanon P, Pavasant P and Leethanakul
C: Periostin plays role in force-induced stem cell potential by
periodontal ligament stem cells. Cell Biol Int. 43:506–515. 2019.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Kobayashi Y, Thirukonda GJ, Nakamura Y,
Koide M, Yamashita T, Uehara S, Kato H, Udagawa N and Takahashi N:
Wnt16 regulates osteoclast differentiation in conjunction with
Wnt5a. Biochem Biophys Res Commun. 463:1278–1283. 2015. View Article : Google Scholar : PubMed/NCBI
|
36
|
Maeda K, Kobayashi Y, Udagawa N, Uehara S,
Ishihara A, Mizoguchi T, Kikuchi Y, Takada I, Kato S, Kani S, et
al: Wnt5a-Ror2 signaling between osteoblast-lineage cells and
osteoclast precursors enhances osteoclastogenesis. Nat Med.
18:405–412. 2012. View Article : Google Scholar : PubMed/NCBI
|
37
|
Roberts JL, Liu G, Paglia DN, Kinter CW,
Fernandes LM, Lorenzo J, Hansen MF, Arif A and Drissi H: Deletion
of Wnt5a in osteoclasts results in bone loss through decreased bone
formation. Ann N Y Acad Sci. 1463:45–59. 2020. View Article : Google Scholar : PubMed/NCBI
|
38
|
Divaris K, Monda KL, North KE, Olshan AF,
Reynolds LM, Hsueh WC, Lange EM, Moss K, Barros SP, Weyant RJ, et
al: Exploring the genetic basis of chronic periodontitis: A
genome-wide association study. Hum Mol Genet. 22:2312–2324. 2013.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Nanbara H, Wara-aswapati N, Nagasawa T,
Yoshida Y, Yashiro R, Bando Y, Kobayashi H, Khongcharoensuk J,
Hormdee D, Pitiphat W, et al: Modulation of Wnt5a expression by
periodontopathic bacteria. PLoS One. 7:e344342012. View Article : Google Scholar : PubMed/NCBI
|
40
|
Maekawa T, Kulwattanaporn P, Hosur K,
Domon H, Oda M, Terao Y, Maeda T and Hajishengallis G: Differential
expression and roles of secreted frizzled-related protein 5 and the
wingless homolog Wnt5a in periodontitis. J Dent Res. 96:571–577.
2017. View Article : Google Scholar : PubMed/NCBI
|
41
|
Haftcheshmeh SM, Mohammadi A, Soltani A,
Momtazi-Borojeni AA and Sattari M: Evaluation of STAT1 and Wnt5a
gene expression in gingival tissues of patients with periodontal
disease. J Cell Biochem. 120:1827–1834. 2019. View Article : Google Scholar
|
42
|
Chatzopoulos GS, Mansky KC, Lunos S,
Costalonga M and Wolff LF: Sclerostin and WNT-5a gingival protein
levels in chronic periodontitis and health. J Periodont Res.
54:555–565. 2019. View Article : Google Scholar
|
43
|
Ge XP, Can YH, Zhang CG, Zhou CY, Ma KT,
Meng JH and Ma XC: Requirement of the NF-κB pathway for induction
of Wnt-5A by interleukin-1β in condylar chondrocytes of the
temporomandibular joint: Functional crosstalk between the Wnt-5A
and NF-κB signaling pathways. Osteoarthritis Cartilage. 19:111–117.
2011. View Article : Google Scholar : PubMed/NCBI
|
44
|
Naskar D, Maiti G, Chakraborty A, Roy A,
Chattopadhyay D and Sen M: Wnt5a-Rac1-NF-κB homeostatic circuitry
sustains innate immune functions in macrophages. J Immunol.
192:4386–4397. 2014. View Article : Google Scholar : PubMed/NCBI
|
45
|
Zhang Q, Liu J, Ma L, Bai N and Xu H:
Wnt5a is involved in LOX-1 and TLR4 induced host inflammatory
response in peri-implantitis. J Periodont Res. 55:199–208. 2020.
View Article : Google Scholar
|
46
|
Pereira C, Schaer DJ, Bachli EB, Kurrer MO
and Schoedon G: Wnt5A/CaMKII signaling contributes to the
inflammatory response of macrophages and is a target for the
antiinflammatory action of activated protein C and interleukin-10.
Arterioscler Thromb Vasc Biol. 28:504–510. 2008. View Article : Google Scholar : PubMed/NCBI
|
47
|
Ouchi N, Higuchi A, Ohashi K, Oshima Y,
Gokce N, Shibata R, Akasaki Y, Shimono A and Walsh K: Sfrp5 is an
anti-inflammatory adipokine that modulates metabolic dysfunction in
obesity. Science. 329:454–457. 2010. View Article : Google Scholar : PubMed/NCBI
|
48
|
Schulz J, Knappe C, Graetz C, Mewes L,
Türk K, Black AK, Lieb W, Schäfer AS, Fawzy El-Sayed KM, Dörfer CE,
et al: Secreted frizzled-related protein 5 serum levels in human
periodontitis-A nested case-control study. J Clin Periodontol.
46:522–528. 2019. View Article : Google Scholar : PubMed/NCBI
|
49
|
Schulte DM, Müller N, Neumann K,
Oberhäuser F, Faust M, Güdelhöfer H, Brandt B, Krone W and Laudes
M: Pro-inflammatory wnt5a and anti-inflammatory sFRP5 are
differentially regulated by nutritional factors in obese human
subjects. PLoS One. 7:e324372012. View Article : Google Scholar : PubMed/NCBI
|
50
|
Tong S, Du Y, Ji Q, Dong R, Cao J, Wang Z,
Li W, Zeng M, Chen H, Zhu X and Zhou Y: Expression of Sfrp5/Wnt5a
in human epicardial adipose tissue and their relationship with
coronary artery disease. Life Sci. 245:1173382020. View Article : Google Scholar : PubMed/NCBI
|
51
|
Lu YC, Wang CP, Hsu CC, Chiu CA, Yu TH,
Hung WC, Lu LF, Chung FM, Tsai IT, Lin HC and Lee YJ: Circulating
secreted frizzled-related protein 5 (Sfrp5) and wingless-type MMTV
integration site family member 5a (Wnt5a) levels in patients with
type 2 diabetes mellitus. Diabetes Metab Res Rev. 29:551–556.
2013.PubMed/NCBI
|
52
|
Cho YK, Kang YM, Lee SE, Lee Y, Seol SM,
Lee WJ, Park JY and Jung CH: Effect of SFRP5 (secreted
frizzled-related protein 5) on the WNT5A (wingless-type family
member 5A)-induced endothelial dysfunction and its relevance with
arterial stiffness in human subjects. Arterioscler Thromb Vasc
Biol. 38:1358–1367. 2018. View Article : Google Scholar : PubMed/NCBI
|
53
|
Mehmeti M, Bergenfelz C, Kallberg E,
Millrud CR, Björk P, Ivars F, Johansson-Lindbom B, Kjellström S,
André I and Leandersson K: Wnt5a is a TLR2/4-ligand that induces
tolerance in human myeloid cells. Commun Biol. 2:1762019.
View Article : Google Scholar : PubMed/NCBI
|
54
|
Feng Y, Liang Y, Zhu X, Wang M, Gui Y, Lu
Q, Gu M, Xue X, Sun X, He W, et al: The signaling protein Wnt5a
promotes TGFβ1-mediated macrophage polarization and kidney fibrosis
by inducing the transcriptional regulators Yap/Taz. J Biol Chem.
293:19290–19302. 2018. View Article : Google Scholar : PubMed/NCBI
|
55
|
Gao YC, Wen Q, Hu SF, Zhou X, Xiong W, Du
X, Zhang L, Fu Y, Yang J, Zhou C, et al: IL-36γ promotes killing of
Mycobacterium tuberculosis by macrophages via WNT5A-induced
noncanonical WNT signaling. J Immunol. 203:922–935. 2019.
View Article : Google Scholar : PubMed/NCBI
|
56
|
Chen FM and Jin Y: Periodontal tissue
engineering and regeneration: Current approaches and expanding
opportunities. Tissue Eng Part B Rev. 16:219–255. 2010. View Article : Google Scholar : PubMed/NCBI
|
57
|
Liu N, Gu B, Liu N, Nie X, Zhang B, Zhou X
and Deng M: Wnt/β-catenin pathway regulates cementogenic
differentiation of adipose tissue-deprived stem cells in dental
follicle cell-conditioned medium. PLoS One. 9:e933642014.
View Article : Google Scholar : PubMed/NCBI
|
58
|
Zhang F, Luo K, Rong Z, Wang Z, Luo F,
Zhang Z, Sun D, Dong S, Xu J and Dai F: Periostin upregulates
Wnt/β-catenin signaling to promote the osteogenesis of
CTLA4-modified human bone marrow-mesenchymal stem cells. Sci Rep.
7:416342017. View Article : Google Scholar : PubMed/NCBI
|
59
|
Morsczeck C, Reck A and Reichert TE: WNT5A
supports viability of senescent human dental follicle cells. Mol
Cell Biochem. 455:21–28. 2019. View Article : Google Scholar : PubMed/NCBI
|
60
|
Yang X, Zhang C, Jiang J and Li Y:
Baicalein retards proliferation and collagen deposition by
activating p38MAPK-JNK via microRNA-29. J Cell Biochem.
120:15625–15634. 2019. View Article : Google Scholar : PubMed/NCBI
|
61
|
Zhao Y, Wang H, Li X, Cao M, Lu H, Meng Q,
Pang H, Li H, Nadolny C, Dong X and Cai L: Ang II-AT1R increases
cell migration through PI3K/AKT and NF-κB pathways in breast
cancer. J Cell Physiol. 229:1855–1862. 2014. View Article : Google Scholar : PubMed/NCBI
|
62
|
Hasegawa D, Wada N, Yoshida S, Mitarai H,
Arima M, Tomokiyo A, Hamano S, Sugii H and Maeda H: Wnt5a
suppresses osteoblastic differentiation of human periodontal
ligament stem cell-like cells via Ror2/JNK signaling. J Cell
Physiol. 233:1752–1762. 2018. View Article : Google Scholar : PubMed/NCBI
|
63
|
Nemoto E, Sakisaka Y, Tsuchiya M, Tamura
M, Nakamura T, Kanaya S, Shimonishi M and Shimauchi H: Wnt3a
signaling induces murine dental follicle cells to differentiate
into cementoblastic/osteoblastic cells via an osterix-dependent
pathway. J Periodont Res. 51:164–174. 2016. View Article : Google Scholar
|
64
|
Nemoto E, Ebe Y, Kanaya S, Tsuchiya M,
Nakamura T, Tamura M and Shimauchi H: Wnt5a signaling is a
substantial constituent in bone morphogenetic protein-2-mediated
osteoblastogenesis. Biochem Biophys Res Commun. 422:627–632. 2012.
View Article : Google Scholar : PubMed/NCBI
|
65
|
Hashimoto Y, Matsuzaki E, Higashi K,
Takahashi-Yanaga F, Takano A, Hirata M and Nishimura F:
Sphingosine-1-phosphate inhibits differentiation of C3H10T1/2 cells
into adipocyte. Mol Cell Biochem. 401:39–47. 2015. View Article : Google Scholar : PubMed/NCBI
|
66
|
Fawzy El-Sayed KM, Elahmady M, Adawi Z,
Aboushadi N, Elnaggar A, Eid M, Hamdy N, Sanaa D and Dörfer CE: The
periodontal stem/progenitor cell inflammatory-regenerative cross
talk: A new perspective. J Periodont Res. 54:81–94. 2019.
View Article : Google Scholar
|
67
|
Nienhuser H, Kim W, Malagola E, Ruan T,
Valenti G, Middelhoff M, Bass A, Der CJ, Hayakawa Y and Wang TC:
Mist1+ gastric isthmus stem cells are regulated by Wnt5a
and expand in response to injury and inflammation in mice. Gut. Jul
24–2020.(Epub ahead of print). doi: 10.1136/gutjnl-2020-320742.
View Article : Google Scholar : PubMed/NCBI
|
68
|
Han P, Lloyd T, Chen Z and Xiao Y:
Proinflammatory cytokines regulate cementogenic differentiation of
periodontal ligament cells by Wnt/Ca(2+) signaling pathway. J
Interferon Cytokine Res. 36:328–337. 2016. View Article : Google Scholar : PubMed/NCBI
|
69
|
Liu N, Shi S, Deng M, Tang L, Zhang G, Liu
N, Ding B, Liu W, Liu Y, Shi H, et al: High levels of β-catenin
signaling reduce osteogenic differentiation of stem cells in
inflammatory microenvironments through inhibition of the
noncanonical Wnt pathway. J Bone Miner Res. 26:2082–2095. 2011.
View Article : Google Scholar : PubMed/NCBI
|