Role of Wnt5a in periodontal tissue development, maintenance, and periodontitis: Implications for periodontal regeneration (Review)
- Authors:
- Xiuqun Wei
- Qian Liu
- Shujuan Guo
- Yafei Wu
-
Affiliations: State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China - Published online on: December 23, 2020 https://doi.org/10.3892/mmr.2020.11806
- Article Number: 167
-
Copyright: © Wei et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Cho MI and Garant PR: Development and general structure of the periodontium. Periodontology 2000. 24:9–27. 2000. View Article : Google Scholar : PubMed/NCBI | |
Luan X, Zhou X, Trombetta-eSilva J, Francis M, Gaharwar AK, Atsawasuwan P and Diekwisch TGH: MicroRNAs and periodontal homeostasis. J Dent Res. 96:491–500. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mombelli A: Microbial colonization of the periodontal pocket and its significance for periodontal therapy. Periodontology 2000. 76:85–96. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Massoudi D, Ren Y, Muir AM, Harris SE, Greenspan DS and Feng JQ: BMP1 and TLL1 are required for maintaining periodontal homeostasis. J Dent Res. 96:578–585. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fujita A, Morimatsu M, Nishiyama M, Naruse K and Takashiba S: Mechanical stress modulates the homeostasis of periodontal ligament. Mol Biol Cell. 29:12018.PubMed/NCBI | |
Li J, Ke X, Yan F, Lei L and Li H: Necroptosis in the periodontal homeostasis: Signals emanating from dying cells. Oral Dis. 24:900–907. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jin Y, Liu DX and Lin XP: IL-35 may maintain homeostasis of the immune microenvironment in periodontitis. Exp Ther Med. 14:5605–5610. 2017.PubMed/NCBI | |
Xie X, Wang J, Wang K, Li C, Zhang S, Jing D, Xu C, Wang X, Zhao H and Feng JQ: Axin2+-mesenchymal PDL cells, instead of K14+ epithelial cells, play a key role in rapid cementum growth. J Dent Res. 98:1262–1270. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gavin BJ, McMahon JA and McMahon AP: Expression of multiple novel Wnt-1/int-1-related genes during fetal and adult mouse development. Genes Dev. 4:2319–2332. 1990. View Article : Google Scholar : PubMed/NCBI | |
Clark CC, Cohen I, Eichstetter I, Cannizzaro LA, McPherson JD, Wasmuth JJ and Iozzo RV: Molecular cloning of the human proto-oncogene Wnt-5A and mapping of the gene (WNT5A) to chromosome 3p14-p21. Genomics. 18:249–260. 1993. View Article : Google Scholar : PubMed/NCBI | |
Bauer M, Bénard J, Gaasterland T, Willert K and Cappellen D: WNT5A encodes two isoforms with distinct functions in cancers. PLoS One. 8:e805262013. View Article : Google Scholar : PubMed/NCBI | |
Kumawat K and Gosens R: WNT-5A: Signaling and functions in health and disease. Cell Mol Life Sci. 73:567–587. 2016. View Article : Google Scholar : PubMed/NCBI | |
Butler MT and Wallingford JB: Planar cell polarity in development and disease. Nat Rev Mol Cell Biol. 18:375–388. 2017. View Article : Google Scholar : PubMed/NCBI | |
De A: Wnt/Ca2+ signaling pathway: A brief overview. Acta Biochim Biophys Sin (Shanghai). 43:745–756. 2011. View Article : Google Scholar : PubMed/NCBI | |
Niehrs C and Acebron SP: Mitotic and mitogenic Wnt signalling. EMBO J. 31:2705–2713. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang D, Zhang Y and Shen C: Research update on the association between SFRP5, an anti-inflammatory adipokine, with obesity, type 2 diabetes mellitus and coronary heart disease. J Cell Mol Med. 24:2730–2735. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yamaguchi TP, Bradley A, McMahon AP and Jones S: A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development. 126:1211–1223. 1999.PubMed/NCBI | |
Bisson JA, Mills B, Paul Helt JC, Zwaka TP and Cohen ED: Wnt5a and Wnt11 inhibit the canonical Wnt pathway and promote cardiac progenitor development via the caspase-dependent degradation of AKT. Dev Biol. 398:80–96. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li CG, Xiao J, Hormi K, Borok Z and Minoo P: Wnt5a participates in distal lung morphogenesis. Dev Biol. 248:68–81. 2002. View Article : Google Scholar : PubMed/NCBI | |
Pashirzad M, Shafiee M, Rahmani F, Behnam-Rassouli R, Hoseinkhani F, Ryzhikov M, Moradi Binabaj M, Parizadeh MR, Avan A and Hassanian SM: Role of Wnt5a in the pathogenesis of inflammatory diseases. J Cell Physiol. 232:1611–1616. 2017. View Article : Google Scholar : PubMed/NCBI | |
Asem MS, Buechler S, Wates RB, Miller DL and Stack MS: Wnt5a signaling in cancer. Cancers (Basel). 8:792016. View Article : Google Scholar | |
Lin M, Li L, Liu C, Liu H, He F, Yan F, Zhang Y and Chen Y: Wnt5a regulates growth, patterning, and odontoblast differentiation of developing mouse tooth. Dev Dyn. 240:432–440. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cai J, Mutoh N, Shin JO, Tani-Ishii N, Ohshima H, Cho SW and Jung HS: Wnt5a plays a crucial role in determining tooth size during murine tooth development. Cell Tissue Res. 345:367–377. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sarkar L and Sharpe PT: Expression of Wnt signalling pathway genes during tooth development. Mech Dev. 85:197–200. 1999. View Article : Google Scholar : PubMed/NCBI | |
Peng L, Ren LB, Dong G, Wang CL, Xu P, Ye L and Zhou XD: Wnt5a promotes differentiation of human dental papilla cells. Int Endod J. 43:404–412. 2010. View Article : Google Scholar : PubMed/NCBI | |
Xiang L, Chen M, He L, Cai B, Du Y, Zhang X, Zhou C, Wang C, Mao JJ and Ling J: Wnt5a regulates dental follicle stem/progenitor cells of the periodontium. Stem Cell Res Ther. 5:1352014. View Article : Google Scholar : PubMed/NCBI | |
Hasegawa D, Wada N, Maeda H, Yoshida S, Mitarai H, Tomokiyo A, Monnouchi S, Hamano S, Yuda A and Akamine A: Wnt5a induces collagen production by human periodontal ligament cells through TGFβ1-mediated upregulation of periostin expression. J Cell Physiol. 230:2647–2660. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fu HD, Wang BK, Wan ZQ, Lin H, Chang ML and Han GL: Wnt5a mediated canonical Wnt signaling pathway activation in orthodontic tooth movement: Possible role in the tension force-induced bone formation. J Mol Histol. 47:455–466. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wu XS, Hu L, Li Y, Wang F, Ma P, Wang J, Zhang C, Jiang C and Wang S: SCAPs regulate differentiation of DFSCs during tooth root development in swine. Int J Med Sci. 15:291–299. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sakisaka Y, Tsuchiya M, Nakamura T, Tamura M, Shimauchi H and Nemoto E: Wnt5a attenuates Wnt3a-induced alkaline phosphatase expression in dental follicle cells. Exp Cell Res. 336:85–93. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wise G: Cellular and molecular basis of tooth eruption. Orthod Craniofac Res. 12:67–73. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gopinathan G, Foyle D, Luan X and Diekwisch TGH: The Wnt antagonist SFRP1: A key regulator of periodontal mineral homeostasis. Stem Cells Dev. 28:1004–1014. 2019. View Article : Google Scholar : PubMed/NCBI | |
Rios HF, Ma D, Xie Y, Giannobile WV, Bonewald LF, Conway SJ and Feng JQ: Periostin is essential for the integrity and function of the periodontal ligament during occlusal loading in mice. J Periodontol. 79:1480–1490. 2008. View Article : Google Scholar : PubMed/NCBI | |
Panchamanon P, Pavasant P and Leethanakul C: Periostin plays role in force-induced stem cell potential by periodontal ligament stem cells. Cell Biol Int. 43:506–515. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kobayashi Y, Thirukonda GJ, Nakamura Y, Koide M, Yamashita T, Uehara S, Kato H, Udagawa N and Takahashi N: Wnt16 regulates osteoclast differentiation in conjunction with Wnt5a. Biochem Biophys Res Commun. 463:1278–1283. 2015. View Article : Google Scholar : PubMed/NCBI | |
Maeda K, Kobayashi Y, Udagawa N, Uehara S, Ishihara A, Mizoguchi T, Kikuchi Y, Takada I, Kato S, Kani S, et al: Wnt5a-Ror2 signaling between osteoblast-lineage cells and osteoclast precursors enhances osteoclastogenesis. Nat Med. 18:405–412. 2012. View Article : Google Scholar : PubMed/NCBI | |
Roberts JL, Liu G, Paglia DN, Kinter CW, Fernandes LM, Lorenzo J, Hansen MF, Arif A and Drissi H: Deletion of Wnt5a in osteoclasts results in bone loss through decreased bone formation. Ann N Y Acad Sci. 1463:45–59. 2020. View Article : Google Scholar : PubMed/NCBI | |
Divaris K, Monda KL, North KE, Olshan AF, Reynolds LM, Hsueh WC, Lange EM, Moss K, Barros SP, Weyant RJ, et al: Exploring the genetic basis of chronic periodontitis: A genome-wide association study. Hum Mol Genet. 22:2312–2324. 2013. View Article : Google Scholar : PubMed/NCBI | |
Nanbara H, Wara-aswapati N, Nagasawa T, Yoshida Y, Yashiro R, Bando Y, Kobayashi H, Khongcharoensuk J, Hormdee D, Pitiphat W, et al: Modulation of Wnt5a expression by periodontopathic bacteria. PLoS One. 7:e344342012. View Article : Google Scholar : PubMed/NCBI | |
Maekawa T, Kulwattanaporn P, Hosur K, Domon H, Oda M, Terao Y, Maeda T and Hajishengallis G: Differential expression and roles of secreted frizzled-related protein 5 and the wingless homolog Wnt5a in periodontitis. J Dent Res. 96:571–577. 2017. View Article : Google Scholar : PubMed/NCBI | |
Haftcheshmeh SM, Mohammadi A, Soltani A, Momtazi-Borojeni AA and Sattari M: Evaluation of STAT1 and Wnt5a gene expression in gingival tissues of patients with periodontal disease. J Cell Biochem. 120:1827–1834. 2019. View Article : Google Scholar | |
Chatzopoulos GS, Mansky KC, Lunos S, Costalonga M and Wolff LF: Sclerostin and WNT-5a gingival protein levels in chronic periodontitis and health. J Periodont Res. 54:555–565. 2019. View Article : Google Scholar | |
Ge XP, Can YH, Zhang CG, Zhou CY, Ma KT, Meng JH and Ma XC: Requirement of the NF-κB pathway for induction of Wnt-5A by interleukin-1β in condylar chondrocytes of the temporomandibular joint: Functional crosstalk between the Wnt-5A and NF-κB signaling pathways. Osteoarthritis Cartilage. 19:111–117. 2011. View Article : Google Scholar : PubMed/NCBI | |
Naskar D, Maiti G, Chakraborty A, Roy A, Chattopadhyay D and Sen M: Wnt5a-Rac1-NF-κB homeostatic circuitry sustains innate immune functions in macrophages. J Immunol. 192:4386–4397. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q, Liu J, Ma L, Bai N and Xu H: Wnt5a is involved in LOX-1 and TLR4 induced host inflammatory response in peri-implantitis. J Periodont Res. 55:199–208. 2020. View Article : Google Scholar | |
Pereira C, Schaer DJ, Bachli EB, Kurrer MO and Schoedon G: Wnt5A/CaMKII signaling contributes to the inflammatory response of macrophages and is a target for the antiinflammatory action of activated protein C and interleukin-10. Arterioscler Thromb Vasc Biol. 28:504–510. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ouchi N, Higuchi A, Ohashi K, Oshima Y, Gokce N, Shibata R, Akasaki Y, Shimono A and Walsh K: Sfrp5 is an anti-inflammatory adipokine that modulates metabolic dysfunction in obesity. Science. 329:454–457. 2010. View Article : Google Scholar : PubMed/NCBI | |
Schulz J, Knappe C, Graetz C, Mewes L, Türk K, Black AK, Lieb W, Schäfer AS, Fawzy El-Sayed KM, Dörfer CE, et al: Secreted frizzled-related protein 5 serum levels in human periodontitis-A nested case-control study. J Clin Periodontol. 46:522–528. 2019. View Article : Google Scholar : PubMed/NCBI | |
Schulte DM, Müller N, Neumann K, Oberhäuser F, Faust M, Güdelhöfer H, Brandt B, Krone W and Laudes M: Pro-inflammatory wnt5a and anti-inflammatory sFRP5 are differentially regulated by nutritional factors in obese human subjects. PLoS One. 7:e324372012. View Article : Google Scholar : PubMed/NCBI | |
Tong S, Du Y, Ji Q, Dong R, Cao J, Wang Z, Li W, Zeng M, Chen H, Zhu X and Zhou Y: Expression of Sfrp5/Wnt5a in human epicardial adipose tissue and their relationship with coronary artery disease. Life Sci. 245:1173382020. View Article : Google Scholar : PubMed/NCBI | |
Lu YC, Wang CP, Hsu CC, Chiu CA, Yu TH, Hung WC, Lu LF, Chung FM, Tsai IT, Lin HC and Lee YJ: Circulating secreted frizzled-related protein 5 (Sfrp5) and wingless-type MMTV integration site family member 5a (Wnt5a) levels in patients with type 2 diabetes mellitus. Diabetes Metab Res Rev. 29:551–556. 2013.PubMed/NCBI | |
Cho YK, Kang YM, Lee SE, Lee Y, Seol SM, Lee WJ, Park JY and Jung CH: Effect of SFRP5 (secreted frizzled-related protein 5) on the WNT5A (wingless-type family member 5A)-induced endothelial dysfunction and its relevance with arterial stiffness in human subjects. Arterioscler Thromb Vasc Biol. 38:1358–1367. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mehmeti M, Bergenfelz C, Kallberg E, Millrud CR, Björk P, Ivars F, Johansson-Lindbom B, Kjellström S, André I and Leandersson K: Wnt5a is a TLR2/4-ligand that induces tolerance in human myeloid cells. Commun Biol. 2:1762019. View Article : Google Scholar : PubMed/NCBI | |
Feng Y, Liang Y, Zhu X, Wang M, Gui Y, Lu Q, Gu M, Xue X, Sun X, He W, et al: The signaling protein Wnt5a promotes TGFβ1-mediated macrophage polarization and kidney fibrosis by inducing the transcriptional regulators Yap/Taz. J Biol Chem. 293:19290–19302. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gao YC, Wen Q, Hu SF, Zhou X, Xiong W, Du X, Zhang L, Fu Y, Yang J, Zhou C, et al: IL-36γ promotes killing of Mycobacterium tuberculosis by macrophages via WNT5A-induced noncanonical WNT signaling. J Immunol. 203:922–935. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen FM and Jin Y: Periodontal tissue engineering and regeneration: Current approaches and expanding opportunities. Tissue Eng Part B Rev. 16:219–255. 2010. View Article : Google Scholar : PubMed/NCBI | |
Liu N, Gu B, Liu N, Nie X, Zhang B, Zhou X and Deng M: Wnt/β-catenin pathway regulates cementogenic differentiation of adipose tissue-deprived stem cells in dental follicle cell-conditioned medium. PLoS One. 9:e933642014. View Article : Google Scholar : PubMed/NCBI | |
Zhang F, Luo K, Rong Z, Wang Z, Luo F, Zhang Z, Sun D, Dong S, Xu J and Dai F: Periostin upregulates Wnt/β-catenin signaling to promote the osteogenesis of CTLA4-modified human bone marrow-mesenchymal stem cells. Sci Rep. 7:416342017. View Article : Google Scholar : PubMed/NCBI | |
Morsczeck C, Reck A and Reichert TE: WNT5A supports viability of senescent human dental follicle cells. Mol Cell Biochem. 455:21–28. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Zhang C, Jiang J and Li Y: Baicalein retards proliferation and collagen deposition by activating p38MAPK-JNK via microRNA-29. J Cell Biochem. 120:15625–15634. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Wang H, Li X, Cao M, Lu H, Meng Q, Pang H, Li H, Nadolny C, Dong X and Cai L: Ang II-AT1R increases cell migration through PI3K/AKT and NF-κB pathways in breast cancer. J Cell Physiol. 229:1855–1862. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hasegawa D, Wada N, Yoshida S, Mitarai H, Arima M, Tomokiyo A, Hamano S, Sugii H and Maeda H: Wnt5a suppresses osteoblastic differentiation of human periodontal ligament stem cell-like cells via Ror2/JNK signaling. J Cell Physiol. 233:1752–1762. 2018. View Article : Google Scholar : PubMed/NCBI | |
Nemoto E, Sakisaka Y, Tsuchiya M, Tamura M, Nakamura T, Kanaya S, Shimonishi M and Shimauchi H: Wnt3a signaling induces murine dental follicle cells to differentiate into cementoblastic/osteoblastic cells via an osterix-dependent pathway. J Periodont Res. 51:164–174. 2016. View Article : Google Scholar | |
Nemoto E, Ebe Y, Kanaya S, Tsuchiya M, Nakamura T, Tamura M and Shimauchi H: Wnt5a signaling is a substantial constituent in bone morphogenetic protein-2-mediated osteoblastogenesis. Biochem Biophys Res Commun. 422:627–632. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hashimoto Y, Matsuzaki E, Higashi K, Takahashi-Yanaga F, Takano A, Hirata M and Nishimura F: Sphingosine-1-phosphate inhibits differentiation of C3H10T1/2 cells into adipocyte. Mol Cell Biochem. 401:39–47. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fawzy El-Sayed KM, Elahmady M, Adawi Z, Aboushadi N, Elnaggar A, Eid M, Hamdy N, Sanaa D and Dörfer CE: The periodontal stem/progenitor cell inflammatory-regenerative cross talk: A new perspective. J Periodont Res. 54:81–94. 2019. View Article : Google Scholar | |
Nienhuser H, Kim W, Malagola E, Ruan T, Valenti G, Middelhoff M, Bass A, Der CJ, Hayakawa Y and Wang TC: Mist1+ gastric isthmus stem cells are regulated by Wnt5a and expand in response to injury and inflammation in mice. Gut. Jul 24–2020.(Epub ahead of print). doi: 10.1136/gutjnl-2020-320742. View Article : Google Scholar : PubMed/NCBI | |
Han P, Lloyd T, Chen Z and Xiao Y: Proinflammatory cytokines regulate cementogenic differentiation of periodontal ligament cells by Wnt/Ca(2+) signaling pathway. J Interferon Cytokine Res. 36:328–337. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu N, Shi S, Deng M, Tang L, Zhang G, Liu N, Ding B, Liu W, Liu Y, Shi H, et al: High levels of β-catenin signaling reduce osteogenic differentiation of stem cells in inflammatory microenvironments through inhibition of the noncanonical Wnt pathway. J Bone Miner Res. 26:2082–2095. 2011. View Article : Google Scholar : PubMed/NCBI |