Research progress of the transcription factor Brn4 (Review)
- Authors:
- Yuying Wu
- Xunrui Zhang
- Jue Wang
- Guohua Jin
- Xinhua Zhang
-
Affiliations: Department of Anatomy, Co-Innovation Center of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu 226001, P.R. China, Department of Clinical Medicine, Faculty of Medicine, Xinglin College, Nantong University, Nantong, Jiangsu 226008, P.R. China - Published online on: December 31, 2020 https://doi.org/10.3892/mmr.2020.11818
- Article Number: 179
-
Copyright: © Wu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Parslow TG, Blair DL, Murphy WJ and Granner DK: Structure of the 5′ ends of immunoglobulin genes: A novel conserved sequence. Proc Natl Acad Sci USA. 81:2650–2654. 1984. View Article : Google Scholar : PubMed/NCBI | |
Herr W, Sturm RA, Clerc RG, Corcoran LM, Baltimore D, Sharp PA, Ingraham HA, Rosenfeld MG, Finney M, Ruvkun G, et al: The POU domain: A large conserved region in the mammalian pit-1, oct-1, 2, and Caenorhabditis elegans unc-86 gene products. Genes Dev. 2:1513–1516. 1988. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Li Y, Wang Y, Zhao P, Wei S, Li Z, Chang H and He H: Biochemical characterization and functional analysis of the POU transcription factor POU-M2 of Bombyx mori. Int J Biol Macromol. 86:701–708. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tang X and Engstrom Y: Regulation of immune and tissue homeostasis by Drosophila POU factors. Insect Biochem Mol Biol. 109:24–30. 2019. View Article : Google Scholar : PubMed/NCBI | |
Malik V, Zimmer D and Jauch R: Diversity among POU transcription factors in chromatin recognition and cell fate reprogramming. Cell Mol Life Sci. 75:1587–1612. 2018. View Article : Google Scholar : PubMed/NCBI | |
Fionda C, Di Bona D, Kosta A, Stabile H, Santoni A and Cippitelli M: The POU-domain transcription factor Oct-6/POU3F1 as a regulator of cellular response to genotoxic stress. Cancers (Basel). 11:8102019. View Article : Google Scholar | |
Barral A, Rollan I, Sanchez-Iranzo H, Jawaid W, Badia-Careaga C, Menchero S, Gomez MJ, Torroja C, Sanchez-Cabo F, Göttgens B, et al: Nanog regulates Pou3f1 expression at the exit from pluripotency during gastrulation. Biol Open. 8:bio0463672019. View Article : Google Scholar : PubMed/NCBI | |
Song L, Sun N, Peng G, Chen J, Han JD and Jing N: Genome-wide ChIP-seq and RNA-seq analyses of Pou3f1 during mouse pluripotent stem cell neural fate commitment. Genom Data. 5:375–377. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li G, Jiapaer Z, Weng R, Hui Y, Jia W, Xi J, Wang G, Zhu S, Zhang X, Feng D, et al: Dysregulation of the SIRT1/OCT6 axis contributes to environmental stress-induced neural induction defects. Stem Cell Reports. 8:1270–1286. 2017. View Article : Google Scholar : PubMed/NCBI | |
Snijders Blok L, Kleefstra T, Venselaar H, Maas S, Kroes HY, Lachmeijer AM, van Gassen KL, Firth HV, Tomkins S, Bodek S, et al: De novo variants disturbing the transactivation capacity of POU3F3 cause a characteristic neurodevelopmental disorder. Am J Hum Genet. 105:403–412. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cosse-Etchepare C, Gervi I, Buisson I, Formery L, Schubert M, Riou JF, Umbhauer M and Le Bouffant R: Pou3f transcription factor expression during embryonic development highlights distinct pou3f3 and pou3f4 localization in the Xenopus laevis kidney. Int J Dev Biol. 62:325–333. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kumar S, Rathkolb B, Kemter E, Sabrautzki S, Michel D, Adler T, Becker L, Beckers J, Busch DH, Garrett L, et al: Generation and standardized, systemic phenotypic analysis of Pou3f3L423P mutant mice. PLoS One. 11:e01504722016. View Article : Google Scholar : PubMed/NCBI | |
Rieger A, Kemter E, Kumar S, Popper B, Aigner B, Wolf E, Wanke R and Blutke A: Missense mutation of POU domain class 3 transcription factor 3 in Pou3f3L423P mice causes reduced nephron number and impaired development of the thick ascending limb of the loop of henle. PLoS One. 11:e01589772016. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Meng Q, Xia Y, Ding C, Wang L, Dai R, Cheng L, Gunaratne P, Gibbs RA, Min S, et al: The transcription factor POU3F2 regulates a gene coexpression network in brain tissue from patients with psychiatric disorders. Sci Transl Med. 10:eaat81782018. View Article : Google Scholar : PubMed/NCBI | |
Lin YJ, Hsin IL, Sun HS, Lin S, Lai YL, Chen HY, Chen TY, Chen YP, Shen YT and Wu HM: NTF3 is a novel target gene of the transcription factor POU3F2 and is required for neuronal differentiation. Mol Neurobiol. 55:8403–8413. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hashizume K, Yamanaka M and Ueda S: POU3F2 participates in cognitive function and adult hippocampal neurogenesis via mammalian-characteristic amino acid repeats. Genes Brain Behav. 17:118–125. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen HY, Lee YH, Chen HY, Yeh CA, Chueh PJ and Lin YM: Capsaicin inhibited aggressive phenotypes through downregulation of tumor-associated NADH Oxidase (tNOX) by POU domain transcription factor POU3F2. Molecules. 21:7332016. View Article : Google Scholar | |
Ding S, Jin Y, Hao Q, Kang Y and Ma R: LncRNA BCYRN1/miR-490-3p/POU3F2, served as a ceRNA network, is connected with worse survival rate of hepatocellular carcinoma patients and promotes tumor cell growth and metastasis. Cancer Cell Int. 20:62020. View Article : Google Scholar : PubMed/NCBI | |
Serrano-Saiz E, Leyva-Diaz E, De La Cruz E and Hobert O: BRN3-type POU homeobox genes maintain the identity of mature postmitotic neurons in nematodes and mice. Curr Biol. 28:2813–2823.e2. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hara Y, Rovescalli AC, Kim Y and Nirenberg M: Structure and evolution of four POU domain genes expressed in mouse brain. Proc Natl Acad Sci USA. 89:3280–3284. 1992. View Article : Google Scholar : PubMed/NCBI | |
Heydemann A, Nguyen LC and Crenshaw EB III: Regulatory regions from the Brn4 promoter direct LACZ expression to the developing forebrain and neural tube. Brain Res Dev Brain Res. 128:83–90. 2001. View Article : Google Scholar : PubMed/NCBI | |
Phippard D, Heydemann A, Lechner M, Lu L, Lee D, Kyin T and Crenshaw EB III: Changes in the subcellular localization of the Brn4 gene product precede mesenchymal remodeling of the otic capsule. Hear Res. 120:77–85. 1998. View Article : Google Scholar : PubMed/NCBI | |
Heller RS, Stoffers DA, Liu A, Schedl A, Crenshaw EB III, Madsen OD and Serup P: The role of Brn4/Pou3f4 and Pax6 in forming the pancreatic glucagon cell identity. Dev Biol. 268:123–134. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hussain MA, Lee J, Miller CP and Habener JF: POU domain transcription factor brain 4 confers pancreatic alpha-cell-specific expression of the proglucagon gene through interaction with a novel proximal promoter G1 element. Mol Cell Biol. 17:7186–7194. 1997. View Article : Google Scholar : PubMed/NCBI | |
Lim R and Brichta AM: Anatomical and physiological development of the human inner ear. Hear Res. 338:9–21. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kanzaki S: Gene delivery into the inner ear and its clinical implications for hearing and balance. Molecules. 23:25072018. View Article : Google Scholar | |
Roccio M and Edge AS: Inner ear organoids: New tools to understand neurosensory cell development, degeneration and regeneration. Development. 146:dev1771882019. View Article : Google Scholar : PubMed/NCBI | |
Brooks PM, Rose KP, MacRae ML, Rangoussis KM, Gurjar M, Hertzano R and Coate TM: Pou3f4-expressing otic mesenchyme cells promote spiral ganglion neuron survival in the postnatal mouse cochlea. J Comp Neurol. 528:1967–1985. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kidokoro Y, Karasawa K, Minowa O, Sugitani Y, Noda T, Ikeda K and Kamiya K: Deficiency of transcription factor Brn4 disrupts cochlear gap junction plaques in a model of DFN3 non-syndromic deafness. PLoS One. 9:e1082162014. View Article : Google Scholar : PubMed/NCBI | |
Phippard D, Lu L, Lee D, Saunders JC and Crenshaw EB III: Targeted mutagenesis of the POU-domain gene Brn4/Pou3f4 causes developmental defects in the inner ear. J Neurosci. 19:5980–5989. 1999. View Article : Google Scholar : PubMed/NCBI | |
de Kok YJ, van der Maarel SM, Bitner-Glindzicz M, Huber I, Monaco AP, Malcolm S, Pembrey ME, Ropers HH and Cremers FP: Association between X-linked mixed deafness and mutations in the POU domain gene POU3F4. Science. 267:685–688. 1995. View Article : Google Scholar : PubMed/NCBI | |
Ocak E, Duman D and Tekin M: Genetic causes of inner ear anomalies: A review from the Turkish study group for inner ear anomalies. Balkan Med J. 36:206–211. 2019. View Article : Google Scholar : PubMed/NCBI | |
DeSmidt AA, Zou B, Grati M, Yan D, Mittal R, Yao Q, Richmond MT, Denyer S, Liu XZ and Lu Z: Zebrafish model for nonsyndromic X-linked sensorineural deafness, DFNX1. Anat Rec (Hoboken). 303:544–555. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yizhar-Barnea O, Valensisi C, Jayavelu ND, Kishore K, Andrus C, Koffler-Brill T, Ushakov K, Perl K, Noy Y, Bhonker Y, et al: DNA methylation dynamics during embryonic development and postnatal maturation of the mouse auditory sensory epithelium. Sci Rep. 8:173482018. View Article : Google Scholar : PubMed/NCBI | |
Gong WX, Gong RZ and Zhao B: HRCT and MRI findings in X-linked non-syndromic deafness patients with a POU3F4 mutation. Int J Pediatr Otorhinolaryngol. 78:1756–1762. 2014. View Article : Google Scholar : PubMed/NCBI | |
Corvino V, Apisa P, Malesci R, Laria C, Auletta G and Franzé A: X-linked sensorineural hearing loss: A literature review. Curr Genomics. 19:327–338. 2018. View Article : Google Scholar : PubMed/NCBI | |
Barashkov NA, Klarov LA, Teryutin FM, Solovyev AV, Pshennikova VG, Konnikova EE, Romanov GP, Tobokhov AV, Morozov IV, Bondar AA, et al: A novel pathogenic variant c.975G>A (p.Trp325*) in the POU3F4 gene in Yakut family (Eastern Siberia, Russia) with the X-linked deafness-2 (DFNX2). Int J Pediatr Otorhinolaryngol. 104:94–97. 2018. View Article : Google Scholar : PubMed/NCBI | |
Giannantonio S, Agolini E, Scorpecci A, Anzivino R, Bellacchio E, Cocciadiferro D, Novelli A, Digilio MC and Marsella P: Genetic identification and molecular modeling characterization of a novel POU3F4 variant in two Italian deaf brothers. Int J Pediatr Otorhinolaryngol. 129:1097902020. View Article : Google Scholar : PubMed/NCBI | |
Ozyilmaz B, Mercan GC, Kirbiyik O, Özdemir TR, Özkara S, Kaya ÖÖ, Kutbay YB, Erdoğan KM, Güvenç MS and Koç A: First-line molecular genetic evaluation of autosomal recessive non-syndromic hearing loss. Turk Arch Otorhinolaryngol. 57:140–148. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jang JH, Oh J, Han JH, Park HR, Kim BJ, Lee S, Kim MY, Lee S, Oh DY, Choung YH and Choi BY: Identification of a novel frameshift variant of POU3F4 and genetic counseling of Korean incomplete partition type III subjects based on detailed genotypes. Genet Test Mol Biomarkers. 23:423–427. 2019. View Article : Google Scholar : PubMed/NCBI | |
Han JJ, Nguyen PD, Oh DY, Han JH, Kim AR, Kim MY, Park HR, Tran LH, Dung NH, Koo JW, et al: Elucidation of the unique mutation spectrum of severe hearing loss in a Vietnamese pediatric population. Sci Rep. 9:16042019. View Article : Google Scholar : PubMed/NCBI | |
Su Y, Gao X, Huang SS, Mao JN, Huang BQ, Zhao JD, Kang DY, Zhang X and Dai P: Clinical and molecular characterization of POU3F4 mutations in multiple DFNX2 Chinese families. BMC Med Genet. 19:1572018. View Article : Google Scholar : PubMed/NCBI | |
Du W, Han MK, Wang DY, Han B, Zong L, Lan L, Yang J, Shen Q, Xie LY, Yu L, et al: A POU3F4 mutation causes nonsyndromic hearing loss in a Chinese X-linked recessive family. Chin Med J (Engl). 130:88–92. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wu D, Huang W, Xu Z, Li S, Zhang J, Chen X, Tang Y, Qiu J, Wang Z, Duan X and Zhang L: Clinical and genetic study of 12 Chinese Han families with nonsyndromic deafness. Mol Genet Genomic Med. 8:e11772020. View Article : Google Scholar : PubMed/NCBI | |
Aristidou C, Theodosiou A, Bak M, Mehrjouy MM, Constantinou E, Alexandrou A, Papaevripidou I, Christophidou-Anastasiadou V, Skordis N, Kitsiou-Tzeli S, et al: Position effect, cryptic complexity, and direct gene disruption as disease mechanisms in de novo apparently balanced translocation cases. PLoS One. 13:e02052982018. View Article : Google Scholar : PubMed/NCBI | |
Anderson EA, Ozutemiz C, Miller BS, Moss TJ and Nascene DR: Hypothalamic hamartomas and inner ear diverticula with X-linked stapes gusher syndrome-new associations? Pediatr Radiol. 50:142–145. 2020. View Article : Google Scholar : PubMed/NCBI | |
Siddiqui A, D'Amico A, Colafati GS, Cicala D, Talenti G, Rajput K, Pinelli L and D'Arco F: Hypothalamic malformations in patients with X-linked deafness and incomplete partition type 3. Neuroradiology. 61:949–952. 2019. View Article : Google Scholar : PubMed/NCBI | |
Henry BM, Skinningsrud B, Saganiak K, Pękala PA, Walocha JA and Tomaszewski KA: Development of the human pancreas and its vasculature-An integrated review covering anatomical, embryological, histological, and molecular aspects. Ann Anat. 221:115–124. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhou Q and Melton DA: Pancreas regeneration. Nature. 557:351–358. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gromada J, Franklin I and Wollheim CB: Alpha-cells of the endocrine pancreas: 35 years of research but the enigma remains. Endocr Rev. 28:84–116. 2007. View Article : Google Scholar : PubMed/NCBI | |
Takeda Y, Fujita Y, Sakai K, Abe T, Nakamura T, Yanagimachi T, Sakagami H, Honjo J, Abiko A, Makino Y and Haneda M: Expression of transcription factors in MEN1-associated pancreatic neuroendocrine tumors. Endocrinol Diabetes Metab Case Rep. 2017:17–0088. 2017.PubMed/NCBI | |
Li F, Su Y, Cheng Y, Jiang X, Peng Y, Li Y, Lu J, Gu Y, Zhang C, Cao Y, et al: Conditional deletion of Men1 in the pancreatic β-cell leads to glucagon-expressing tumor development. Endocrinology. 156:48–57. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bramswig NC and Kaestner KH: Transcriptional regulation of α-cell differentiation. Diabetes Obes Metab. 13 (Suppl 1):S13–S20. 2011. View Article : Google Scholar | |
Tan SY, Mei Wong JL, Sim YJ, Wong SS, Mohamed Elhassan SA, Tan SH, Ling Lim GP, Rong Tay NW, Annan NC, Bhattamisra SK and Candasamy M: Type 1 and 2 diabetes mellitus: A review on current treatment approach and gene therapy as potential intervention. Diabetes Metab Syndr. 13:364–372. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zamfirov K and Philippe J: Musculoskeletal complications in diabetes mellitus. Rev Med Suisse. 13:917–921. 2017.(in French). PubMed/NCBI | |
Phadnis SM, Joglekar MV, Dalvi MP, Muthyala S, Nair PD, Ghaskadbi SM, Bhonde RR and Hardikar AA: Human bone marrow-derived mesenchymal cells differentiate and mature into endocrine pancreatic lineage in vivo. Cytotherapy. 13:279–293. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sueda R, Imayoshi I, Harima Y and Kageyama R: High Hes1 expression and resultant Ascl1 suppression regulate quiescent vs. active neural stem cells in the adult mouse brain. Genes Dev. 33:511–523. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shimazaki T, Arsenijevic Y, Ryan AK, Rosenfeld MG and Weiss S: A role for the POU-III transcription factor Brn-4 in the regulation of striatal neuron precursor differentiation. EMBO J. 18:444–456. 1999. View Article : Google Scholar : PubMed/NCBI | |
Tan X, Zhang L, Qin J, Tian M, Zhu H, Dong C, Zhao H and Jin G: Transplantation of neural stem cells co-transfected with Nurr1 and Brn4 for treatment of Parkinsonian rats. Int J Dev Neurosci. 31:82–87. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tan X, Zhang L, Zhu H, Qin J, Tian M, Dong C, Li H and Jin G: Brn4 and TH synergistically promote the differentiation of neural stem cells into dopaminergic neurons. Neurosci Lett. 571:23–28. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Jin G, Wang L, Hu W, Tian M, Qin J and Huang H: Brn-4 is upregulated in the deafferented hippocampus and promotes neuronal differentiation of neural progenitors in vitro. Hippocampus. 19:176–186. 2009. View Article : Google Scholar : PubMed/NCBI | |
Shi J, Jin G, Zhu H, Tian M, Zhang X, Qin J and Tan X: The role of Brn-4 in the regulation of neural stem cell differentiation into neurons. Neurosci Res. 67:8–17. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Zhang L, Cheng X, Guo Y, Sun X, Chen G, Li H, Li P, Lu X, Tian M, et al: IGF-1 promotes Brn-4 expression and neuronal differentiation of neural stem cells via the PI3K/Akt pathway. PLoS One. 9:e1138012014. View Article : Google Scholar : PubMed/NCBI | |
Ninkovic J, Steiner-Mezzadri A, Jawerka M, Akinci U, Masserdotti G, Petricca S, Fischer J, von Holst A, Beckers J, Lie CD, et al: The BAF complex interacts with Pax6 in adult neural progenitors to establish a neurogenic cross-regulatory transcriptional network. Cell Stem Cell. 13:403–418. 2013. View Article : Google Scholar : PubMed/NCBI | |
Guo J, Cheng X, Zhang L, Wang L, Mao Y, Tian G, Xu W, Wu Y, Ma Z, Qin J, et al: Exploration of the Brn4-regulated genes enhancing adult hippocampal neurogenesis by RNA sequencing. J Neurosci Res. 95:2071–2079. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Zhang X, Zhang Y, Xu N, Wang J, Zhu Y and Xia C: Brn4 promotes the differentiation of radial glial cells into neurons by inhibiting CtBP2. Life Sci. 254:1168662020. View Article : Google Scholar : PubMed/NCBI | |
Dhivya V and Balachandar V: Cell replacement therapy is the remedial solution for treating Parkinson's disease. Stem Cell Investig. 4:592017. View Article : Google Scholar : PubMed/NCBI | |
Tan XF, Qin JB, Jin GH, Tian ML, Li HM, Zhu HX, Zhang XH, Shi JH and Huang Z: Effects of Brn-4 on the neuronal differentiation of neural stem cells derived from rat midbrain. Cell Biol Int. 34:877–882. 2010. View Article : Google Scholar : PubMed/NCBI | |
Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS and Jones JM: Embryonic stem cell lines derived from human blastocysts. Science. 282:1145–1147. 1998. View Article : Google Scholar : PubMed/NCBI | |
Takahashi K and Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126:663–676. 2006. View Article : Google Scholar : PubMed/NCBI | |
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K and Yamanaka S: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 131:861–872. 2007. View Article : Google Scholar : PubMed/NCBI | |
Jerabek S, Ng CK, Wu G, Arauzo-Bravo MJ, Kim KP, Esch D, Malik V, Chen Y, Velychko S, MacCarthy CM, et al: Changing POU dimerization preferences converts Oct6 into a pluripotency inducer. EMBO Rep. 18:319–333. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ma K, Deng X, Xia X, Fan Z, Qi X, Wang Y, Li Y, Ma Y, Chen Q, Peng H, et al: Direct conversion of mouse astrocytes into neural progenitor cells and specific lineages of neurons. Transl Neurodegener. 7:292018. View Article : Google Scholar : PubMed/NCBI | |
Ma Y, Wang K, Pan J, Fan Z, Tian C, Deng X, Ma K, Xia X, Huang Y and Zheng JC: Induced neural progenitor cells abundantly secrete extracellular vesicles and promote the proliferation of neural progenitors via extracellular signal-regulated kinase pathways. Neurobiol Dis. 124:322–334. 2019. View Article : Google Scholar : PubMed/NCBI | |
He M, Zhang H, Li Y, Tian C, Tang B, Huang Y and Zheng J: Direct and selective lineage conversion of human fibroblasts to dopaminergic precursors. Neurosci Lett. 699:16–23. 2019. View Article : Google Scholar : PubMed/NCBI | |
Black JB, Adler AF, Wang HG, D'Ippolito AM, Hutchinson HA, Reddy TE, Pitt GS, Leong KW and Gersbach CA: Targeted epigenetic remodeling of endogenous Loci by CRISPR/Cas9-based transcriptional activators directly converts fibroblasts to neuronal cells. Cell Stem Cell. 19:406–414. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chuang W, Sharma A, Shukla P, Li G, Mall M, Rajarajan K, Abilez OJ, Hamaguchi R, Wu JC, Wernig M and Wu SM: Partial reprogramming of pluripotent stem cell-derived cardiomyocytes into neurons. Sci Rep. 7:448402017. View Article : Google Scholar : PubMed/NCBI | |
Luo C, Lee QY, Wapinski O, Castanon R, Nery JR, Mall M, Kareta MS, Cullen SM, Goodell MA, Chang HY, et al: Global DNA methylation remodeling during direct reprogramming of fibroblasts to neurons. Elife. 8:e401972019. View Article : Google Scholar : PubMed/NCBI | |
Treutlein B, Lee QY, Camp JG, Mall M, Koh W, Shariati SA, Sim S, Neff NF, Skotheim JM, Wernig M and Quake SR: Dissecting direct reprogramming from fibroblast to neuron using single-cell RNA-seq. Nature. 534:391–395. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhu X, Zhou W, Jin H and Li T: Brn2 alone is sufficient to convert astrocytes into neural progenitors and neurons. Stem Cells Dev. 27:736–744. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kim SM, Kim JW, Kwak TH, Park SW, Kim KP, Park H, Lim KT, Kang K, Kim J, Yang JH, et al: Generation of integration-free induced neural stem cells from mouse fibroblasts. J Biol Chem. 291:14199–14212. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kwak TH, Hali S, Kim S, Kim J, La H, Kim KP, Hong KH, Shin CY, Kim NH and Han DW: Robust and reproducible generation of induced neural stem cells from human somatic cells by defined factors. Int J Stem Cells. 13:80–92. 2020. View Article : Google Scholar : PubMed/NCBI | |
Han DW, Tapia N, Hermann A, Hemmer K, Höing S, Araúzo-Bravo MJ, Zaehres H, Wu G, Frank S, Moritz S, et al: Direct reprogramming of fibroblasts into neural stem cells by defined factors. Cell Stem Cell. 10:465–472. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chang YK, Srivastava Y, Hu C, Joyce A, Yang X, Zuo Z, Havranek JJ, Stormo GD and Jauch R: Quantitative profiling of selective Sox/POU pairing on hundreds of sequences in parallel by Coop-seq. Nucleic Acids Res. 45:832–845. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bar-Nur O, Verheul C, Sommer AG, Brumbaugh J, Schwarz BA, Lipchina I, Huebner AJ, Mostoslavsky G and Hochedlinger K: Lineage conversion induced by pluripotency factors involves transient passage through an iPSC stage. Nat Biotechnol. 33:761–768. 2015. View Article : Google Scholar : PubMed/NCBI | |
Velychko S, Kang K, Kim SM, Kwak TH, Kim KP, Park C, Hong K, Chung C, Hyun JK, MacCarthy CM, et al: Fusion of reprogramming factors alters the trajectory of somatic lineage conversion. Cell Rep. 27:30–39.e4. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zou Q, Yan Q, Zhong J, Wang K, Sun H, Yi X and Lai L: Direct conversion of human fibroblasts into neuronal restricted progenitors. J Biol Chem. 289:5250–5260. 2014. View Article : Google Scholar : PubMed/NCBI | |
Potts MB, Siu JJ, Price JD, Salinas RD, Cho MJ, Ramos AD, Hahn J, Margeta M, Oldham MC and Lim DA: Analysis of Mll1 deficiency identifies neurogenic transcriptional modules and Brn4 as a factor for direct astrocyte-to-neuron reprogramming. Neurosurgery. 75:472–482. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yu Q, Chen J, Deng W, Cao X, Wang Y, Zhou J, Xu W, Du P, Wang Q, Yu J and Xu X: Direct reprogramming of mouse fibroblasts into neural cells via Porphyra yezoensis polysaccharide based high efficient gene co-delivery. J Nanobiotechnology. 15:822017. View Article : Google Scholar : PubMed/NCBI | |
Huffman JL and Harmer B: End of Life Care. StatPearls [Internet]. StatPearls Publishing; Treasure Island, FL: 2020 | |
Faguet GB: Quality end-of-life cancer care: An overdue imperative. Crit Rev Oncol Hematol. 108:69–72. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bhagirath D, Yang TL, Tabatabai ZL, Majid S, Dahiya R, Tanaka Y and Saini S: BRN4 is a novel driver of neuroendocrine differentiation in castration-resistant prostate cancer and is selectively released in extracellular vesicles with BRN2. Clin Cancer Res. 25:6532–6545. 2019. View Article : Google Scholar : PubMed/NCBI |