1
|
Bugianesi E, Leone N, Vanni E, Marchesini
G, Brunello F, Carucci P, Musso A, De Paolis P, Capussotti L,
Salizzoni M, et al: Expanding the natural history of nonalcoholic
steatohepatitis: From cryptogenic cirrhosis to hepatocellular
carcinoma. Gastroenterology. 123:134–140. 2002. View Article : Google Scholar : PubMed/NCBI
|
2
|
Esler WP and Bence KK: Metabolic Targets
in Nonalcoholic Fatty Liver Disease. Cell Mol Gastroenterol
Hepatol. 8:247–267. 2019. View Article : Google Scholar : PubMed/NCBI
|
3
|
Tilg H and Moschen AR: Evolution of
inflammation in nonalcoholic fatty liver disease: The multiple
parallel hits hypothesis. Hepatology. 52:1836–1846. 2010.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Day CP and James OFW: Steatohepatitis: A
tale of two ‘hits’? Gastroenterology. 114:842–845. 1998. View Article : Google Scholar : PubMed/NCBI
|
5
|
Anty R and Gual P: Pathogenesis of
non-alcoholic fatty liver disease. Presse Med. 48:1468–1483.
2019.(In French). View Article : Google Scholar : PubMed/NCBI
|
6
|
Takatani N, Kono Y, Beppu F,
Okamatsu-Ogura Y, Yamano Y, Miyashita K and Hosokawa M: Fucoxanthin
inhibits hepatic oxidative stress, inflammation, and fibrosis in
diet-induced nonalcoholic steatohepatitis model mice. Biochem
Biophys Res Commun. 528:305–310. 2020. View Article : Google Scholar : PubMed/NCBI
|
7
|
Ke Z, Zhao Y, Tan S, Chen H, Li Y, Zhou Z
and Huang C: Citrus reticulata Blanco peel extract ameliorates
hepatic steatosis, oxidative stress and inflammation in HF and MCD
diet-induced NASH C57BL/6 J mice. J Nutr Biochem. 83:1084262020.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Suga T, Yamaguchi H, Ogura J, Shoji S,
Maekawa M and Mano N: Altered bile acid composition and disposition
in a mouse model of non-alcoholic steatohepatitis. Toxicol Appl
Pharmacol. 379:1146642019. View Article : Google Scholar : PubMed/NCBI
|
9
|
Matsumoto M, Hada N, Sakamaki Y, Uno A,
Shiga T, Tanaka C, Ito T, Katsume A and Sudoh M: An improved mouse
model that rapidly develops fibrosis in non-alcoholic
steatohepatitis. Int J Exp Pathol. 94:93–103. 2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Xu J, Li G, Wang P, Velazquez H, Yao X, Li
Y, Wu Y, Peixoto A, Crowley S and Desir GV: Renalase is a novel,
soluble monoamine oxidase that regulates cardiac function and blood
pressure. J Clin Invest. 115:1275–1280. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Wu Y, Xu J, Velazquez H, Wang P, Li G, Liu
D, Sampaio-Maia B, Quelhas-Santos J, Russell K, Russell R, et al:
Renalase deficiency aggravates ischemic myocardial damage. Kidney
Int. 79:853–860. 2011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Wang F, Huang B, Li J, Liu L and Wang N:
Renalase might be associated with hypertension and insulin
resistance in type 2 diabetes. Ren Fail. 36:552–556. 2014.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Wang L, Velazquez H, Chang J, Safirstein R
and Desir GV: Identification of a receptor for extracellular
renalase. PLoS One. 10:e01229322015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Wang Y, Safirstein R, Velazquez H, Guo XJ,
Hollander L, Chang J, Chen TM, Mu JJ and Desir GV: Extracellular
renalase protects cells and organs by outside-in signalling. J Cell
Mol Med. 21:1260–1265. 2017. View Article : Google Scholar : PubMed/NCBI
|
15
|
Wu Y, Wang L, Deng D, Zhang Q and Liu W:
Renalase protects against renal fibrosis by inhibiting the
activation of the ERK signaling pathways. Int J Mol Sci. 18:1–25.
2017.
|
16
|
Li H, Guo J, Liu H, Niu Y, Wang L, Huang K
and Wang J: Renalase as a novel biomarker for evaluating the
severity of hepatic ischemia-reperfusion injury. Oxid Med Cell
Longev. 2016:31785622016. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhang T, Gu J, Guo J, Chen K, Li H and
Wang J: Renalase attenuates mouse fatty liver ischemia/reperfusion
injury through mitigating oxidative stress and mitochondrial damage
via activating SIRT1. Oxid Med Cell Longev. 2019:75342852019.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Nagate T, Chino T, Nishiyama C, Okuhara D,
Tahara T, Maruyama Y, Kasahara H, Takashima K, Kobayashi S,
Motokawa Y, et al: Diluted isoflurane as a suitable alternative for
diethyl ether for rat anaesthesia in regular toxicology studies. J
Vet Med Sci. 69:1137–1143. 2007. View Article : Google Scholar : PubMed/NCBI
|
19
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2-ΔΔCT method. Methods. 2001.25((4)): 402–408,
doi:10.1006/meth.2001.1262. View Article : Google Scholar : PubMed/NCBI
|
20
|
Kikugawa K, Yasuhara Y, Ando K, Koyama K,
Hiramoto K and Suzuki M: Effect of supplementation of n-3
polyunsaturated fatty acids on oxidative stress-induced DNA damage
of rat hepatocytes. Biol Pharm Bull. 26:1239–1244. 2003. View Article : Google Scholar : PubMed/NCBI
|
21
|
Zhao B, Zhao Q, Li J, Xing T, Wang F and
Wang N: Renalase protects against contrast-induced nephropathy in
Sprague-Dawley rats. PLoS One. 10:e01165832015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ghani MA, Barril C, Bedgood DR Jr and
Prenzler PD: Measurement of antioxidant activity with the
thiobarbituric acid reactive substances assay. Food Chem.
230:195–207. 2017. View Article : Google Scholar : PubMed/NCBI
|
23
|
Palladini G, Di Pasqua LG, Berardo C,
Siciliano V, Richelmi P, Perlini S, Ferrigno A and Vairetti M:
Animal models of steatosis (NAFLD) and steatohepatitis (NASH)
exhibit hepatic lobe-specific gelatinases activity and oxidative
stress. Can J Gastroenterol Hepatol. 2019:54134612019. View Article : Google Scholar : PubMed/NCBI
|
24
|
Horas H, Nababan S, Nishiumi S, Kawano Y,
Kobayashi T, Yoshida M and Azuma T and Azuma T: Adrenic acid as an
inflammation enhancer in non-alcoholic fatty liver disease. Arch
Biochem Biophys. 623-624:64–75. 2017. View Article : Google Scholar : PubMed/NCBI
|
25
|
Chen Y, Dong H, Thompson DC, Shertzer HG,
Nebert DW and Vasiliou V: Glutathione defense mechanism in liver
injury: Insights from animal models. Food Chem Toxicol. 60:38–44.
2013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Cha JY, Kim DH and Chun KH: The role of
hepatic macrophages in nonalcoholic fatty liver disease and
nonalcoholic steatohepatitis. Lab Anim Res. 34:133–139. 2018.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Wu Y, Wang L, Wang X, Wang Y, Zhang Q and
Liu W: Renalase contributes to protection against renal fibrosis
via inhibiting oxidative stress in rats. Int Urol Nephrol.
50:1347–1354. 2018. View Article : Google Scholar : PubMed/NCBI
|
28
|
Huang Z, Li Q, Yuan Y, Zhang C, Wu L, Liu
X, Cao W, Guo H, Duan S, Xu X, et al: Renalase attenuates
mitochondrial fission in cisplatin-induced acute kidney injury via
modulating sirtuin-3. Life Sci. 222:78–87. 2019. View Article : Google Scholar : PubMed/NCBI
|
29
|
Cai CX, Buddha H, Castelino-Prabhu S,
Zhang Z, Britton RS, Bacon BR and Neuschwander-Tetri BA: Activation
of insulin-PI3K/Akt-p70S6K pathway in hepatic stellate cells
contributes to fibrosis in nonalcoholic steatohepatitis. Dig Dis
Sci. 62:968–978. 2017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Xu F, Liu C, Zhou D and Zhang L:
TGF-β/SMAD Pathway and Its Regulation in Hepatic Fibrosis. J
Histochem Cytochem. 64:157–167. 2016. View Article : Google Scholar : PubMed/NCBI
|
31
|
Ma L, Li H, Zhang S, Xiong X, Chen K,
Jiang P, Jiang K and Deng G: Emodin ameliorates renal fibrosis in
rats via TGF-β1/Smad signaling pathway and function study of Smurf
2. Int Urol Nephrol. 50:373–382. 2018. View Article : Google Scholar : PubMed/NCBI
|
32
|
Lv Y, Bing Q, Lv Z, Xue J, Li S, Han B,
Yang Q, Wang X and Zhang Z: Imidacloprid-induced liver fibrosis in
quails via activation of the TGF-β1/Smad pathway. Sci Total
Environ. 705:1359152020. View Article : Google Scholar : PubMed/NCBI
|