1
|
Schwertani A, Choi HY and Genest J: HDLs
and the pathogenesis of atherosclerosis. Curr Opin Cardiol.
33:311–316. 2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Weber C and Noels H: Atherosclerosis:
Current pathogenesis and therapeutic options. Nat Med.
17:1410–1422. 2011. View
Article : Google Scholar : PubMed/NCBI
|
3
|
Spence JD: Recent advances in
pathogenesis, assessment, and treatment of atherosclerosis. F1000
Res. 5:18802016. View Article : Google Scholar
|
4
|
Nicorescu I, Dallinga GM, de Winther MPJ,
Stroes ESG and Bahjat M: Potential epigenetic therapeutics for
atherosclerosis treatment. Atherosclerosis. 281:189–197. 2019.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Musunuru K and Kathiresan S: Surprises
from genetic analyses of lipid risk factors for atherosclerosis.
Circ Res. 118:579–585. 2016. View Article : Google Scholar : PubMed/NCBI
|
6
|
Bennett MR, Sinha S and Owens GK: Vascular
smooth muscle cells in atherosclerosis. Circ Res. 118:692–702.
2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Hu D, Yin C, Luo S, Habenicht AJR and
Mohanta SK: Vascular smooth muscle cells contribute to
atherosclerosis immunity. Front Immunol. 10:11012019. View Article : Google Scholar : PubMed/NCBI
|
8
|
Lacolley P, Regnault V, Segers P and
Laurent S: Vascular smooth muscle cells and arterial stiffening:
Relevance in development, aging, and disease. Physiol Rev.
97:1555–1617. 2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Alexander MR and Owens GK: Epigenetic
control of smooth muscle cell differentiation and phenotypic
switching in vascular development and disease. Annu Rev Physiol.
74:13–40. 2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Ping S, Li Y, Liu S, Zhang Z, Wang J, Zhou
Y, Liu K, Huang J, Chen D, Wang J, et al: Simultaneous increases in
proliferation and apoptosis of vascular smooth muscle cells
accelerate diabetic mouse venous atherosclerosis. PLoS One.
10:e01413752015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Hou J, Xue X and Li J: Vasostatin-2
inhibits cell proliferation and adhesion in vascular smooth muscle
cells, which are associated with the progression of
atherosclerosis. Biochem Biophys Res Commun. 469:948–953. 2016.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Eulalio A, Huntzinger E and Izaurralde E:
Getting to the root of miRNA-mediated gene silencing. Cell.
132:9–14. 2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Farazi TA, Spitzer JI, Morozov P and
Tuschl T: miRNAs in human cancer. J Pathol. 223:102–115. 2011.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhu J, Zhu W and Wu W: MicroRNAs change
the landscape of cancer resistance. Methods Mol Biol. 1699:83–89.
2018. View Article : Google Scholar : PubMed/NCBI
|
15
|
Kato M, Wang M, Chen Z, Bhatt K, Oh HJ,
Lanting L, Deshpande S, Jia Y, Lai JY, O'Connor CL, et al: An
endoplasmic reticulum stress-regulated lncRNA hosting a microRNA
megacluster induces early features of diabetic nephropathy. Nat
Commun. 7:128642016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Ha M and Kim VN: Regulation of microRNA
biogenesis. Nat Rev Mol Cell Biol. 15:509–524. 2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Salta E and De Strooper B: microRNA-132: A
key noncoding RNA operating in the cellular phase of Alzheimer's
disease. FASEB J. 31:424–433. 2017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhang Y, Liu Z, Zhou M and Liu C:
MicroRNA-129-5p inhibits vascular smooth muscle cell proliferation
by targeting Wnt5a. Exp Ther Med. 12:2651–2656. 2016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Feinberg MW and Moore KJ: MicroRNA
Regulation of Atherosclerosis. Circ Res. 118:703–720. 2016.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Yu X and Li Z: MicroRNAs regulate vascular
smooth muscle cell functions in atherosclerosis (Review). Int J Mol
Med. 34:923–933. 2014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Sun J, Tao S, Liu L, Guo D, Xia Z and
Huang M: miR-140-5p regulates angiogenesis following ischemic
stroke by targeting VEGFA. Mol Med Rep. 13:4499–4505. 2016.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Hu Y, Li Y, Wu C, Zhou L, Han X, Wang Q,
Xie X, Zhou Y and Du Z: MicroRNA-140-5p inhibits cell proliferation
and invasion by regulating VEGFA/MMP2 signaling in glioma. Tumour
Biol. 39:10104283176975582017. View Article : Google Scholar : PubMed/NCBI
|
23
|
Liu Q-Q, Ren K, Liu S-H, Li W-M, Huang C-J
and Yang X-H: MicroRNA-140-5p aggravates hypertension and oxidative
stress of atherosclerosis via targeting Nrf2 and Sirt2. Int J Mol
Med. 43:839–849. 2019.PubMed/NCBI
|
24
|
Rothman AMK, Arnold ND, Pickworth JA,
Iremonger J, Ciuclan L, Allen RMH, Guth-Gundel S, Southwood M,
Morrell NW, Thomas M, et al: MicroRNA-140-5p and SMURF1 regulate
pulmonary arterial hypertension. J Clin Invest. 126:2495–2508.
2016. View
Article : Google Scholar : PubMed/NCBI
|
25
|
Koch AW, Mathivet T, Larrivée B, Tong RK,
Kowalski J, Pibouin-Fragner L, Bouvrée K, Stawicki S, Nicholes K,
Rathore N, et al: Robo4 maintains vessel integrity and inhibits
angiogenesis by interacting with UNC5B. Dev Cell. 20:33–46. 2011.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Park KW, Morrison CM, Sorensen LK, Jones
CA, Rao Y, Chien CB, Wu JY, Urness LD and Li DY: Robo4 is a
vascular-specific receptor that inhibits endothelial migration. Dev
Biol. 261:251–267. 2003. View Article : Google Scholar : PubMed/NCBI
|
27
|
Zhang F, Prahst C, Mathivet T,
Pibouin-Fragner L, Zhang J, Genet G, Tong R, Dubrac A and Eichmann
A: The Robo4 cytoplasmic domain is dispensable for vascular
permeability and neovascularization. Nat Commun. 7:135172016.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Okada Y, Funahashi N, Tanaka T, Nishiyama
Y, Yuan L, Shirakura K, Turjman AS, Kano Y, Naruse H, Suzuki A, et
al: Endothelial cell-specific expression of roundabout 4 is
regulated by differential DNA methylation of the proximal promoter.
Arterioscler Thromb Vasc Biol. 34:1531–1538. 2014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Tian R, Liu Z, Zhang H, Fang X, Wang C, Qi
S, Cheng Y and Su G: Investigation of the regulation of roundabout4
by hypoxia-inducible factor-1α in microvascular endothelial cells.
Invest Ophthalmol Vis Sci. 56:2586–2594. 2015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Dai C, Gong Q, Cheng Y and Su G:
Regulatory mechanisms of Robo4 and their effects on angiogenesis.
Biosci Rep. 39:BSR201905132019. View Article : Google Scholar : PubMed/NCBI
|
31
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Agarwal V, Bell GW, Nam JW and Bartel DP:
Predicting effective microRNA target sites in mammalian mRNAs.
eLife. 4:e050052015. View Article : Google Scholar
|
33
|
Gao S, Wassler M, Zhang L, Li Y, Wang J,
Zhang Y, Shelat H, Williams J and Geng YJ: MicroRNA-133a regulates
insulin-like growth factor-1 receptor expression and vascular
smooth muscle cell proliferation in murine atherosclerosis.
Atherosclerosis. 232:171–179. 2014. View Article : Google Scholar : PubMed/NCBI
|
34
|
Liu Z, He F, OuYang S, Li Y, Ma F, Chang
H, Cao D and Wu J: miR-140-5p could suppress tumor proliferation
and progression by targeting TGFBRI/SMAD2/3 and IGF-1R/AKT
signaling pathways in Wilms' tumor. BMC Cancer. 19:4052019.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Grigelioniene G, Suzuki HI, Taylan F,
Mirzamohammadi F, Borochowitz ZU, Ayturk UM, Tzur S, Horemuzova E,
Lindstrand A, Weis MA, et al: Gain-of-function mutation of
microRNA-140 in human skeletal dysplasia. Nat Med. 25:583–590.
2019. View Article : Google Scholar : PubMed/NCBI
|
36
|
Yang Y, Liu D, Xi Y and Li J, Liu B and Li
J: Upregulation of miRNA-140-5p inhibits inflammatory cytokines in
acute lung injury through the MyD88/NF-κB signaling pathway by
targeting TLR4. Exp Ther Med. 16:3913–3920. 2018.PubMed/NCBI
|
37
|
Zhu TT, Zhang WF, Yin YL, Liu YH, Song P,
Xu J, Zhang MX and Li P: MicroRNA-140-5p targeting tumor necrosis
factor-α prevents pulmonary arterial hypertension. J Cell Physiol.
234:9535–9550. 2019. View Article : Google Scholar : PubMed/NCBI
|
38
|
Li H, Ouyang XP, Jiang T, Zheng XL, He PP
and Zhao GJ: MicroRNA-296: A promising target in the pathogenesis
of atherosclerosis? Mol Med. 24:122018. View Article : Google Scholar : PubMed/NCBI
|
39
|
Meiler S, Baumer Y, Toulmin E, Seng K and
Boisvert WA: MicroRNA 302a is a novel modulator of cholesterol
homeostasis and atherosclerosis. Arterioscler Thromb Vasc Biol.
35:323–331. 2015. View Article : Google Scholar : PubMed/NCBI
|
40
|
Nazari-Jahantigh M, Wei Y, Noels H, Akhtar
S, Zhou Z, Koenen RR, Heyll K, Gremse F, Kiessling F, Grommes J, et
al: MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in
macrophages. J Clin Invest. 122:4190–4202. 2012. View Article : Google Scholar : PubMed/NCBI
|
41
|
Rotllan N, Ramírez CM, Aryal B, Esau CC
and Fernández-Hernando C: Therapeutic silencing of microRNA-33
inhibits the progression of atherosclerosis in Ldlr−/−
mice - brief report. Arterioscler Thromb Vasc Biol. 33:1973–1977.
2013. View Article : Google Scholar : PubMed/NCBI
|
42
|
Baumer Y, McCurdy S, Alcala M, Mehta N,
Lee BH, Ginsberg MH and Boisvert WA: CD98 regulates vascular smooth
muscle cell proliferation in atherosclerosis. Atherosclerosis.
256:105–114. 2017. View Article : Google Scholar : PubMed/NCBI
|
43
|
Wang T, Zhou H, Chen Y, Zhang P and Wang
T: The biphasic effects of the oxLDL/β2GPI/anti-β2GPI complex on
VSMC proliferation and apoptosis. Cell Signal. 57:29–44. 2019.
View Article : Google Scholar : PubMed/NCBI
|