1
|
Moon DO, Choi YH, Kim ND, Park YM and Kim
GY: Anti-inflammatory effects of beta-lapachone in
lipopolysaccharide-stimulated BV2 microglia. Int Immunopharmacol.
7:506–514. 2007. View Article : Google Scholar : PubMed/NCBI
|
2
|
Van Den Eeden SK, Tanner CM, Bernstein AL,
Fross RD, Leimpeter A, Bloch DA and Nelson LM: Incidence of
Parkinson's disease: Variation by age, gender, and race/ethnicity.
Am J Epidemiol. 157:1015–1022. 2003. View Article : Google Scholar : PubMed/NCBI
|
3
|
Cotzias GC: L-Dopa for Parkinsonism. N
Engl J Med. 278:6301968. View Article : Google Scholar : PubMed/NCBI
|
4
|
Tran TN, Vo TNN, Frei K and Truong DD:
Levodopa-induced dyskinesia: Clinical features, incidence, and risk
factors. J Neural Transm (Vienna). 125:1109–1117. 2018. View Article : Google Scholar : PubMed/NCBI
|
5
|
Jenner P: Molecular mechanisms of
L-DOPA-induced dyskinesia. Nat Rev Neurosci. 9:665–677. 2008.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Santini E, Heiman M, Greengard P, Valjent
E and Fisone G: Inhibition of mTOR signaling in Parkinson's disease
prevents L-DOPA-induced dyskinesia. Sci Signal. 2:ra362009.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Santini E, Alcacer C, Cacciatore S, Heiman
M, Hervé D, Greengard P, Girault JA, Valjent E and Fisone G: L-DOPA
activates ERK signaling and phosphorylates histone H3 in the
striatonigral medium spiny neurons of hemiparkinsonian mice. J
Neurochem. 108:621–633. 2009. View Article : Google Scholar : PubMed/NCBI
|
8
|
Park HY, Kang YM, Kang Y, Park TS, Ryu YK,
Hwang JH, Kim YH, Chung BH, Nam KH, Kim MR, et al: Inhibition of
adenylyl cyclase type 5 prevents L-DOPA-induced dyskinesia in an
animal model of Parkinson's disease. J Neurosci. 34:11744–11753.
2014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Shen W, Plotkin JL, Francardo V, Ko WK,
Xie Z, Li Q, Fieblinger T, Wess J, Neubig RR, Lindsley CW, et al:
M4 muscarinic receptor signaling ameliorates striatal plasticity
deficits in models of L-DOPA-induced dyskinesia. Neuron.
88:762–773. 2015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Carta AR, Mulas G, Bortolanza M, Duarte T,
Pillai E, Fisone G, Vozari RR and Del-Bel E: l-DOPA-induced
dyskinesia and neuroinflammation: Do microglia and astrocytes play
a role? Eur J Neurosci. 45:73–91. 2017. View Article : Google Scholar : PubMed/NCBI
|
11
|
McGeer PL, Itagaki S, Boyes BE and McGeer
EG: Reactive microglia are positive for HLA-DR in the substantia
nigra of Parkinson's and Alzheimer's disease brains. Neurology.
38:1285–1291. 1988. View Article : Google Scholar : PubMed/NCBI
|
12
|
Teismann P, Tieu K, Cohen O, Choi DK, Wu
DC, Marks D, Vila M, Jackson-Lewis V and Przedborski S: Pathogenic
role of glial cells in Parkinson's disease. Mov Disord. 18:121–129.
2003. View Article : Google Scholar : PubMed/NCBI
|
13
|
Bortolanza M, Cavalcanti-Kiwiatkoski R,
Padovan-Neto FE, da-Silva CA, Mitkovski M, Raisman-Vozari R and
Del-Bel E: Glial activation is associated with l-DOPA induced
dyskinesia and blocked by a nitric oxide synthase inhibitor in a
rat model of Parkinson's disease. Neurobiol Dis. 73:377–387. 2015.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Schaffner-Sabba K, Schmidt-Ruppin KH,
Wehrli W, Schuerch AR and Wasley JW: beta-Lapachone: Synthesis of
derivatives and activities in tumor models. J Med Chem. 27:990–994.
1984. View Article : Google Scholar : PubMed/NCBI
|
15
|
Gomez Castellanos JR, Prieto JM and
Heinrich M: Red lapacho (Tabebuia impetiginosa)-a global
ethnopharmacological commodity? J Ethnopharmacol. 121:1–13. 2009.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Hussain H and Green IR: Lapachol and
lapachone analogs: A journey of two decades of patent research
(1997–2016). Expert Opin Ther Pat. 27:1111–1121. 2017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Xu J, Wagoner G, Douglas JC and Drew PD:
β-Lapachone ameliorization of experimental autoimmune
encephalomyelitis. J Neuroimmunol. 254:46–54. 2013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Kim KH, Le TH, Oh HK, Heo B, Moon J, Shin
S and Jeong SH: Protective microencapsulation of β-lapachone using
porous glass membrane technique based on experimental optimisation.
J Microencapsul. 34:545–559. 2017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Lee M, Ban JJ, Chung JY, Im W and Kim M:
Amelioration of Huntington's disease phenotypes by Beta-Lapachone
is associated with increases in Sirt1 expression, CREB
phosphorylation and PGC-1α deacetylation. PLoS One.
13:e01959682018. View Article : Google Scholar : PubMed/NCBI
|
20
|
Park JS, Leem YH, Park JE, Kim DY and Kim
HS: Neuroprotective effect of β-lapachone in MPTP-induced
parkinson's disease mouse model: Involvement of astroglial
p-AMPK/Nrf2/HO-1 signaling pathways. Biomol Ther (Seoul).
27:178–184. 2019. View Article : Google Scholar : PubMed/NCBI
|
21
|
Pink JJ, Planchon SM, Tagliarino C, Varnes
ME, Siegel D and Boothman DA: NAD(P)H:Quinone oxidoreductase
activity is the principal determinant of beta-lapachone
cytotoxicity. J Biol Chem. 275:5416–5424. 2000. View Article : Google Scholar : PubMed/NCBI
|
22
|
Beaver SK, Mesa-Torres N, Pey AL and
Timson DJ: NQO1: A target for the treatment of cancer and
neurological diseases, and a model to understand loss of function
disease mechanisms. Biochim Biophys Acta Proteins Proteom.
1867:663–676. 2019. View Article : Google Scholar : PubMed/NCBI
|
23
|
Go J, Ryu YK, Park HY, Choi DH, Choi YK,
Hwang DY, Lee CH and Kim KS: NQO1 regulates pharmaco-behavioral
effects of d-amphetamine in striatal dopaminergic system in mice.
Neuropharmacology. 170:1080392020. View Article : Google Scholar : PubMed/NCBI
|
24
|
Lee EJ, Ko HM, Jeong YH, Park EM and Kim
HS: β-Lapachone suppresses neuroinflammation by modulating the
expression of cytokines and matrix metalloproteinases in activated
microglia. J Neuroinflammation. 12:1332015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Park JS, Lee YY, Kim J, Seo H and Kim HS:
β-Lapachone increases phase II antioxidant enzyme expression via
NQO1-AMPK/PI3K-Nrf2/ARE signaling in rat primary astrocytes. Free
Radic Biol Med. 97:168–178. 2016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Ryu YK, Park HY, Go J, Choi DH, Kim YH,
Hwang JH, Noh JR, Lee TG, Lee CH and Kim KS: Metformin inhibits the
development of L-DOPA-induced dyskinesia in a murine model of
Parkinson's disease. Mol Neurobiol. 55:5715–5726. 2018. View Article : Google Scholar : PubMed/NCBI
|
27
|
Ryu YK, Go J, Park HY, Choi YK, Seo YJ,
Choi JH, Rhee M, Lee TG, Lee CH and Kim KS: Metformin regulates
astrocyte reactivity in Parkinson's disease and normal aging.
Neuropharmacology. 175:1081732020. View Article : Google Scholar : PubMed/NCBI
|
28
|
Faull RL and Laverty R: Changes in
dopamine levels in the corpus striatum following lesions in the
substantia nigra. Exp Neurol. 23:332–340. 1969. View Article : Google Scholar : PubMed/NCBI
|
29
|
Jeon BS, Jackson-Lewis V and Burke RE:
6-Hydroxydopamine lesion of the rat substantia nigra: Time course
and morphology of cell death. Neurodegeneration. 4:131–137. 1995.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Xie CL, Lin JY, Wang MH, Zhang Y, Zhang
SF, Wang XJ and Liu ZG: Inhibition of glycogen synthase kinase-3β
(GSK-3β) as potent therapeutic strategy to ameliorates
L-dopa-induced dyskinesia in 6-OHDA parkinsonian rats. Sci Rep.
6:235272016. View Article : Google Scholar : PubMed/NCBI
|
31
|
Georgievska B, Sandin J, Doherty J,
Mörtberg A, Neelissen J, Andersson A, Gruber S, Nilsson Y, Schött
P, Arvidsson PI, et al: AZD1080, a novel GSK3 inhibitor, rescues
synaptic plasticity deficits in rodent brain and exhibits
peripheral target engagement in humans. J Neurochem. 125:446–456.
2013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Frame S and Cohen P: GSK3 takes centre
stage more than 20 years after its discovery. Biochem J. 359:1–16.
2001. View Article : Google Scholar : PubMed/NCBI
|
33
|
Pavon N, Martin AB, Mendialdua A and
Moratalla R: ERK phosphorylation and FosB expression are associated
with L-DOPA-induced dyskinesia in hemiparkinsonian mice. Biol
Psychiatry. 59:64–74. 2006. View Article : Google Scholar : PubMed/NCBI
|
34
|
Santini E, Valjent E, Usiello A, Carta M,
Borgkvist A, Girault JA, Hervé D, Greengard P and Fisone G:
Critical involvement of cAMP/DARPP-32 and extracellular
signal-regulated protein kinase signaling in L-DOPA-induced
dyskinesia. J Neurosci. 27:6995–7005. 2007. View Article : Google Scholar : PubMed/NCBI
|
35
|
Peineau S, Bradley C, Taghibiglou C,
Doherty A, Bortolotto ZA, Wang YT and Collingridge GL: The role of
GSK-3 in synaptic plasticity. Br J Pharmacol. 153 (Suppl
1):S428–S437. 2008. View Article : Google Scholar : PubMed/NCBI
|
36
|
Lucas FR, Goold RG, Gordon-Weeks PR and
Salinas PC: Inhibition of GSK-3beta leading to the loss of
phosphorylated MAP-1B is an early event in axonal remodelling
induced by WNT-7a or lithium. J Cell Sci. 111:1351–1361.
1998.PubMed/NCBI
|
37
|
Rui Y, Myers KR, Yu K, Wise A, De Blas AL,
Hartzell HC and Zheng JQ: Activity-dependent regulation of
dendritic growth and maintenance by glycogen synthase kinase 3β.
Nat Commun. 4:26282013. View Article : Google Scholar : PubMed/NCBI
|
38
|
Golpich M, Amini E, Hemmati F, Ibrahim NM,
Rahmani B, Mohamed Z, Raymond AA, Dargahi L, Ghasemi R and
Ahmadiani A: Glycogen synthase kinase-3 beta (GSK-3 β) signaling:
Implications for Parkinson's disease. Pharmacol Res. 97:16–26.
2015. View Article : Google Scholar : PubMed/NCBI
|
39
|
Mulas G, Espa E, Fenu S, Spiga S, Cossu G,
Pillai E, Carboni E, Simbula G, Jadžić D, Angius F, et al:
Differential induction of dyskinesia and neuroinflammation by
pulsatile versus continuous l-DOPA delivery in the 6-OHDA model of
Parkinson's disease. Exp Neurol. 286:83–92. 2016. View Article : Google Scholar : PubMed/NCBI
|
40
|
Barnum CJ, Eskow KL, Dupre K, Blandino P
Jr, Deak T and Bishop C: Exogenous corticosterone reduces
L-DOPA-induced dyskinesia in the hemi-parkinsonian rat: Role for
interleukin-1beta. Neuroscience. 156:30–41. 2008. View Article : Google Scholar : PubMed/NCBI
|