1
|
Xie JL, Lin MB and Hou Q: [Recent advances
in the study of Nrf2 and inflammatory respiratory diseases. Yao Xue
Xue Bao. 50:1080–1087. 2015.(In Chinese). PubMed/NCBI
|
2
|
Damiani E, Donati A and Girardis M: Oxygen
in the critically ill: Friend or foe? Curr Opin Anaesthesiol.
31:129–135. 2018. View Article : Google Scholar : PubMed/NCBI
|
3
|
Zhang X, Chu X, Weng B, Gong X and Cai C:
An innovative model of bronchopulmonary dysplasia in premature
infants. Front Pediatr. 8:2712020. View Article : Google Scholar : PubMed/NCBI
|
4
|
Kalikkot Thekkeveedu R, Guaman MC and
Shivanna B: Bronchopulmonary dysplasia: A review of pathogenesis
and pathophysiology. Respir Med. 132:170–177. 2017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Wai KC, Kohn MA, Ballard RA, Truog WE,
Black DM, Asselin JM, Ballard PL, Rogers EE and Keller RL; Trial of
Late Surfactant (TOLSURF) Study Group, : Early cumulative
supplemental oxygen predicts bronchopulmonary dysplasia in high
risk extremely low gestational age newborns. J Pediatr.
177:97–102.e2. 2016. View Article : Google Scholar : PubMed/NCBI
|
6
|
Lui K, Lee SK, Kusuda S, Adams M, Vento M,
Reichman B, Darlow BA, Lehtonen L, Modi N, Norman M, et al
International Network for Evaluation of Outcomes (iNeo) of neonates
Investigators, : Trends in outcomes for neonates born very preterm
and very low birth weight in 11 high-income countries. J Pediatr.
215:32–40.e14. 2019. View Article : Google Scholar : PubMed/NCBI
|
7
|
Abreu CC, Cardozo LF and Mafra D: Could
physical exercises modulate Nrf2-Keap1 pathway in chronic kidney
disease? Med Hypotheses. 84:44–46. 2015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Courcot E, Leclerc J, Lafitte JJ, Mensier
E, Jaillard S, Gosset P, Shirali P, Pottier N, Broly F and
Lo-Guidice JM: Xenobiotic metabolism and disposition in human lung
cell models: Comparison with in vivo expression profiles. Drug
Metab Dispos. 40:1953–1965. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Yee M, Domm W, Gelein R, Bentley KL,
Kottmann RM, Sime PJ, Lawrence BP and O'Reilly MA: Alternative
progenitor lineages regenerate the adult lung depleted of alveolar
epithelial type 2 cells. Am J Respir Cell Mol Biol. 56:453–464.
2017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Forred BJ, Daugaard DR, Titus BK, Wood RR,
Floen MJ, Booze ML and Vitiello PF: Detoxification of mitochondrial
oxidants and apoptotic signaling are facilitated by thioredoxin-2
and peroxiredoxin-3 during hyperoxic injury. PLoS One.
12:e01687772017. View Article : Google Scholar : PubMed/NCBI
|
11
|
Cai C, Qiu J, Qiu G, Chen Y, Song Z, Li J
and Gong X: Long non-coding RNA MALAT1 protects preterm infants
with bronchopulmonary dysplasia by inhibiting cell apoptosis. BMC
Pulm Med. 17:1992017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Kunzmann S, Ottensmeier B, Speer CP and
Fehrholz M: Effect of progesterone on Smad signaling and
TGF-β/Smad-regulated genes in lung epithelial cells. PLoS One.
13:e02006612018. View Article : Google Scholar : PubMed/NCBI
|
13
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2-ΔΔCT method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI
|
14
|
Stoll BJ, Hansen NI, Bell EF, Walsh MC,
Carlo WA, Shankaran S, Laptook AR, Sánchez PJ, Van Meurs KP,
Wyckoff M, et al: Eunice kennedy shriver national institute of
child health and human development neonatal research network:
trends in care practices, morbidity, and mortality of extremely
preterm neonates, 1993–2012. JAMA. 314:1039–1051. 2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Bai YX, Fang F, Jiang JL and Xu F:
Extrinsic calcitonin gene-related peptide inhibits
hyperoxia-induced alveolar epithelial type II cells apoptosis,
oxidative stress, and reactive oxygen species (ROS) production by
enhancing Notch 1 and homocysteine-induced endoplasmic reticulum
protein (HERP) expression. Med Sci Monit. 23:5774–5782. 2017.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Lal CV and Ambalavanan N: Genetic
predisposition to bronchopulmonary dysplasia. Semin Perinatol.
39:584–591. 2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Bernstein E, Caudy AA, Hammond SM and
Hannon GJ: Role for a bidentate ribonuclease in the initiation step
of RNA interference. Nature. 409:363–366. 2001. View Article : Google Scholar : PubMed/NCBI
|
18
|
Lu H, Gao C, Tang W and Zhang T: Effect of
glucose regulated protein 78 gene silencing on hyperoxia-induced
apoptosis in alveolar epithelial cells. Xi Bao Yu Fen Zi Mian Yi
Xue Za Zhi. 30:1247–1250. 2014.(In Chinese). PubMed/NCBI
|
19
|
Yamamoto M, Kensler TW and Motohashi H:
The KEAP1-NRF2 System: A thiol-based sensor-effector apparatus for
maintaining redox homeostasis. Physiol Rev. 98:1169–1203. 2018.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Cho HY, Jedlicka AE, Gladwell W, Marzec J,
McCaw ZR, Bienstock RJ and Kleeberger SR: Association of Nrf2
polymorphism haplotypes with acute lung injury phenotypes in inbred
strains of mice. Antioxid Redox Signal. 22:325–338. 2015.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Kim KH, Kwun MJ, Han CW, Ha KT, Choi JY
and Joo M: Suppression of lung inflammation in an LPS-induced acute
lung injury model by the fruit hull of Gleditsia sinensis. BMC
Complement Altern Med. 14:4022014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Cho HY, Miller-DeGraff L,
Blankenship-Paris T, Wang X, Bell DA, Lih F, Deterding L, Panduri
V, Morgan DL, Yamamoto M, et al: Sulforaphane enriched
transcriptome of lung mitochondrial energy metabolism and provided
pulmonary injury protection via Nrf2 in mice. Toxicol Appl
Pharmacol. 364:29–44. 2019. View Article : Google Scholar : PubMed/NCBI
|
23
|
Li Q, Wall SB, Ren C, Velten M, Hill CL,
Locy ML, Rogers LK and Tipple TE: Thioredoxin reductase inhibition
attenuates neonatal hyperoxic lung injury and enhances nuclear
factor E2-related factor 2 activation. Am J Respir Cell Mol Biol.
55:419–428. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhang X, Chu X, Gong X, Zhou H and Cai C:
The expression of miR-125b in Nrf2-silenced A549 cells exposed to
hyperoxia and its relationship with apoptosis. J Cell Mol Med.
24:965–972. 2020. View Article : Google Scholar : PubMed/NCBI
|
25
|
Cho HY and Kleeberger SR: Association of
Nrf2 with airway pathogenesis: Lessons learned from genetic mouse
models. Arch Toxicol. 89:1931–1957. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Sussan TE, Gajghate S, Chatterjee S,
Mandke P, McCormick S, Sudini K, Kumar S, Breysse PN, Diette GB,
Sidhaye VK, et al: Nrf2 reduces allergic asthma in mice through
enhanced airway epithelial cytoprotective function. Am J Physiol
Lung Cell Mol Physiol. 309:L27–L36. 2015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Kobayashi EH, Suzuki T, Funayama R,
Nagashima T, Hayashi M, Sekine H, Tanaka N, Moriguchi T, Motohashi
H, Nakayama K, et al: Nrf2 suppresses macrophage inflammatory
response by blocking proinflammatory cytokine transcription. Nat
Commun. 7:116242016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Raghunath A, Sundarraj K, Nagarajan R,
Arfuso F, Bian J, Kumar AP, Sethi G and Perumal E: Antioxidant
response elements: Discovery, classes, regulation and potential
applications. Redox Biol. 17:297–314. 2018. View Article : Google Scholar : PubMed/NCBI
|
29
|
Qiu L, Wang M, Zhu Y, Xiang Y and Zhang Y:
A naturally-occurring dominant-negative inhibitor of Keap1
competitively against its negative regulation of Nrf2. Int J Mol
Sci. 19:192018. View Article : Google Scholar
|
30
|
Iso T, Suzuki T, Baird L and Yamamoto M:
Absolute amounts and status of the Nrf2-Keap1-Cul3 complex within
cells. Mol Cell Biol. 36:3100–3112. 2016. View Article : Google Scholar : PubMed/NCBI
|
31
|
Sekine H, Okazaki K, Ota N, Shima H, Katoh
Y, Suzuki N, Igarashi K, Ito M, Motohashi H and Yamamoto M: The
mediator subunit MED16 transduces NRF2-activating signals into
antioxidant gene expression. Mol Cell Biol. 36:407–420. 2015.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Zhang H, Zhou L, Davies KJA and Forman HJ:
Silencing Bach1 alters aging-related changes in the expression of
Nrf2-regulated genes in primary human bronchial epithelial cells.
Arch Biochem Biophys. 672:1080742019. View Article : Google Scholar : PubMed/NCBI
|
33
|
Otsuki A, Suzuki M, Katsuoka F, Tsuchida
K, Suda H, Morita M, Shimizu R and Yamamoto M: Unique cistrome
defined as CsMBE is strictly required for Nrf2-sMaf heterodimer
function in cytoprotection. Free Radic Biol Med. 91:45–57. 2016.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Lu MC, Ji JA, Jiang ZY and You QD: The
Keap1-Nrf2-ARE pathway as a potential preventive and therapeutic
target: an update. Med Res Rev. 36:924–963. 2016. View Article : Google Scholar : PubMed/NCBI
|
35
|
Jung JS, Lee SY, Kim DH and Kim HS:
Protopanaxatriol ginsenoside Rh1 upregulates phase II antioxidant
enzyme gene expression in rat primary astrocytes: involvement of
MAP kinases and Nrf2/ARE signaling. Biomol Ther (Seoul). 24:33–39.
2016. View Article : Google Scholar : PubMed/NCBI
|
36
|
Jiang W, Maturu P, Liang YW, Wang L,
Lingappan K and Couroucli X: Hyperoxia-mediated transcriptional
activation of cytochrome P4501A1 (CYP1A1) and decreased
susceptibility to oxygen-mediated lung injury in newborn mice.
Biochem Biophys Res Commun. 495:408–413. 2018. View Article : Google Scholar : PubMed/NCBI
|
37
|
Ling Y, Li ZZ, Zhang JF, Zheng XW, Lei ZQ,
Chen RY and Feng JH: MicroRNA-494 inhibition alleviates acute lung
injury through Nrf2 signaling pathway via NQO1 in sepsis-associated
acute respiratory distress syndrome. Life Sci. 210:1–8. 2018.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Loboda A, Damulewicz M, Pyza E, Jozkowicz
A and Dulak J: Role of Nrf2/HO-1 system in development, oxidative
stress response and diseases: An evolutionarily conserved
mechanism. Cell Mol Life Sci. 73:3221–3247. 2016. View Article : Google Scholar : PubMed/NCBI
|