1
|
Ramzy MM, Abdalla AM, Zenhom NM, Okasha
AM, Abdelkafy AE and Saleh RK: Therapeutic effect of liraglutide on
expression of CTGF and BMP-7 in induced diabetic nephropathy. J
Cell Biochem. 120:17512–17519. 2019. View Article : Google Scholar : PubMed/NCBI
|
2
|
Yaribeygi H, Mohammadi MT, Rezaee R and
Sahebkar A: Fenofibrate improves renal function by amelioration of
NOX-4, IL-18, and p53 expression in an experimental model of
diabetic nephropathy. J Cell Biochem. 119:7458–7469. 2018.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Forbes JM and Thorburn DR: Mitochondrial
dysfunction in diabetic kidney disease. Nat RevNephrol. 14:291–312.
2018.
|
4
|
Cybulsky AV: Endoplasmic reticulum stress,
the unfolded protein response and autophagy in kidney diseases. Nat
Rev Nephrol. 13:681–696. 2017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Yang W, Luo Y, Yang S, Zeng M, Zhang S,
Liu J, Han Y, Liu Y, Zhu X, Wu H, et al: Ectopic lipid
accumulation: Potential role in tubular injury and inflammation in
diabetic kidney disease. Clin Sci (Lond). 132:2407–2422. 2018.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Fornoni A, Merscher S and Kopp JB: Lipid
biology of the podocyte-new perspectives offer new opportunities.
Nat Rev Nephrol. 10:379–388. 2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Brosius FC III: New insights into the
mechanisms of fibrosis and sclerosis in diabetic nephropathy. Rev
Endocr Metab Disord. 9:245–254. 2008. View Article : Google Scholar : PubMed/NCBI
|
8
|
Soyal SM, Nofziger C, Dossena S, Paulmichl
M and Patsch W: Targeting SREBPs for treatment of the metabolic
syndrome. Trends Pharmacol Sci. 36:406–416. 2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Jun H, Song Z, Chen W, Zanhua R, Yonghong
S, Shuxia L and Huijun D: In vivo and in vitro effects of SREBP-1
on diabetic renal tubular lipid accumulation and RNAi-mediated gene
silencing study. Histochem Cell Biol. 131:327–345. 2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zhou Z, He C and Wang J: Regulation
mechanism of Fbxw7-related signaling pathways (Review). Oncol Rep.
34:2215–2224. 2015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Kourtis N, Strikoudis A and Aifantis I:
Emerging roles for the FBXW7 ubiquitin ligase in leukemia and
beyond. Curr Opin Cell Biol. 37:28–34. 2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Yumimoto K and Nakayama KI: Recent insight
into the role of FBXW7 as a tumor suppressor. Semin Cancer Biol.
67:1–15. 2020. View Article : Google Scholar : PubMed/NCBI
|
13
|
Fiore D, Piscopo C, Proto MC, Vasaturo M,
Piaz FD, Fusco BM, Pagano C, Laezza C, Bifulco M and Gazzerro P:
N6-Isopentenyladenosine inhibits colorectal cancer and improves
sensitivity to 5-fluorouracil-targeting FBXW7 tumor suppressor.
Cancers (Basel). 28:14562019. View Article : Google Scholar
|
14
|
Hao J, Liu S, Zhao S, Liu Q, Lv X, Chen H,
Niu Y and Duan H: PI3K/Akt pathway mediates high glucose-induced
lipogenesis and extracellular matrix accumulation in HKC cells
through regulation of SREBP-1 and TGF-β1. Histochem Cell Biol.
135:173–181. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Du W, Wang N, Li F, Jia K, An J, Liu Y,
Wang Y, Zhu L, Zhao S and Hao J: STAT3 phosphorylation mediates
high glucose-impaired cell autophagy in an HDAC1-dependent and
-independent manner in schwann cells of diabetic peripheral
neuropathy. FASEB J. 33:8008–8021. 2019. View Article : Google Scholar : PubMed/NCBI
|
16
|
Racusen LC, Monteil C, Sgrignoli A,
Lucskay M, Marouillat S, Rhim JG and Morin JP: Cell lines with
extended in vitro growth potential from human renal proximal
tubule: Characterization, response to inducers, and comparison with
established cell lines. J Labo Clin Med. 129:318–329. 1997.
View Article : Google Scholar
|
17
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Ceriello A: Postprandial hyperglycemia and
diabetes complications: Is it time to treat? Diabetes. 541:1–7.
2005. View Article : Google Scholar
|
19
|
Zhuang L, Jin G, Hu X, Yang Q and Shi Z:
The inhibition of SGK1 suppresses epithelial-mesenchymal transition
and promotes renal tubular epithelial cell autophagy in diabetic
nephropathy. Am J Transl Res. 118:4946–4956. 2019.
|
20
|
Brenachot X, Ramadori G, Ioris RM,
Veyrat-Durebex C, Altirriba J, Aras E, Ljubicic S, Kohno D,
Fabbiano S, Clement S, et al: Hepatic protein tyrosine phosphatase
receptor gamma links obesity-induced inflammation to insulin
resistance. Nat Commun. 8:18202017. View Article : Google Scholar : PubMed/NCBI
|
21
|
Zhao J, Xiong X, Li Y, Liu X, Wang T,
Zhang H, Jiao Y, Jiang J, Zhang H, Tang Q, et al: Hepatic F-box
protein FBXW7 maintains glucose homeostasis through degradation of
fetuin-A. Diabetes. 67:818–830. 2018. View Article : Google Scholar : PubMed/NCBI
|
22
|
Tu Lu-Mei LM, Wang Y and Yan-Ling MU:
Expression of FBXW7 in diabetic cardiomyopathy. Chin J
Pathophysiol. 34:2271–2276. 2018.
|
23
|
Gao C, Fan F, Chen J, Long Y, Tang S,
Jiang C and Xu Y: FBW7 regulates the autophagy signal in mesangial
cells induced by high glucose. Biomed Res Int. 2019:60615942019.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Tu K, Zheng X, Yin G, Zan X, Yao Y and Liu
Q: Evaluation of Fbxw7 expression and its correlation with
expression of SREBP-1 in a mouse model of NAFLD. Mol Med Rep.
6:525–530. 2012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Hao J, Zhu L, Zhao S, Liu S, Liu Q and
Duan H: PTEN ameliorates high glucose-induced lipid deposits
through regulating SREBP-1/FASN/ACC pathway in renal proximal
tubular cells. Exp Cell Res. 317:1629–1639. 2011. View Article : Google Scholar : PubMed/NCBI
|
26
|
Sundqvist A, Bengoechea-Alonso MT, Ye X,
Lukiyanchuk V, Jin J, Harper JW and Ericsson J: Control of lipid
metabolism by phosphorylation-dependent degradation of the SREBP
family of transcription factors by SCF(Fbw7). Cell Metab.
1:379–391. 2005. View Article : Google Scholar : PubMed/NCBI
|
27
|
Bengoechea-Alonso MT and Ericsson J: The
phosphorylation-dependent regulation of nuclear SREBP1 during
mitosis links lipid metabolism and cell growth. Cell Cycle.
15:2753–2765. 2016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Jeon TI, Esquejo RM, Roqueta-Rivera M,
Phelan PE, Moon YA, Govindarajan SS, Esau CC and Osborne TF: An
SREBP-responsive microRNA operon contributes to a regulatory loop
for intracellular lipid homeostasis. Cell Metab. 18:51–61. 2013.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Yeh CH, Bellon M and Nicot C: FBXW7: a
critical tumor suppressor of human cancers. Mol Cancer. 17:1152018.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Lei S, Su W, Xia ZY, Wang Y, Zhou L, Qiao
S, Zhao B, Xia Z and Irwin M: Hyperglycemia-Induced Oxidative
Stress Abrogates Remifentanil Preconditioning-Mediated
Cardioprotection in Diabetic Rats by Impairing Caveolin-3-Modulated
PI3K/Akt and JAK2/STAT3 Signaling. Oxid Med Cell Longev.
2019:98363022019. View Article : Google Scholar : PubMed/NCBI
|
31
|
Hao J, Zhu L, Li F, Liu Q, Zhao X, Liu S,
Xing L, Feng X and Duan H: Phospho-mTOR: A novel target in
regulation of renal lipid metabolism abnormality of diabetes. Exp
Cell Res. 319:2296–2306. 2013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Liu W, Hao J, Zhu L, Li F, Liu Q, Liu S,
Zhao S, Li H and Duan H: Phospho-GSK-3β is involved in the
high-glucose-mediated lipid deposition in renal tubular cells in
diabetes. Int J Biochem Cell Biol. 45:2066–2075. 2013. View Article : Google Scholar : PubMed/NCBI
|
33
|
Suryo Rahmanto A, Savov V, Brunner A,
Bolin S, Weishaupt H, Malyukova A, Rosén G, Čančer M, Hutter S and
Sundström A: FBW7 suppression leads to SOX9 stabilization and
increased malignancy in medulloblastoma. EMBO J. 35:2192–2212.
2016. View Article : Google Scholar : PubMed/NCBI
|