1
|
Lucas JB: The Physiology and Biomechanics
of Skin Flaps. Facial Plast Surg Clin North Am. 25:303–311. 2017.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Starkman SJ, Williams CT and Sherris DA:
Flap Basics I: Rotation and Transposition Flaps. Facial Plast Surg
Clin North Am. 25:313–321. 2017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Zhang YJ, Chen G, Guan H and Hu DH:
Advances in the research of poststernotomy dehiscence and repair
with tissue flap transplantation. Zhonghua Shao Shang Za Zhi.
35:879–883. 2019.(In Chinese). PubMed/NCBI
|
4
|
Sigaux N, Philouze P, Boucher F,
Jacquemart M, Frobert P and Breton P: Efficacy of the postoperative
management after microsurgical free tissue transfer. J Stomatol
Oral Maxillofac Surg. 118:173–177. 2017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Polito F, Bitto A, Galeano M, Irrera N,
Marini H, Calò M, Squadrito F and Altavilla D:
Polydeoxyribonucleotide restores blood flow in an experimental
model of ischemic skin flaps. J Vasc Surg. 55:479–488. 2012.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Chen Z, Liu L, Gao C, Chen W, Vong CT, Yao
P, Yang Y, Li X, Tang X, Wang S, et al: Astragali Radix (Huangqi):
A promising edible immunomodulatory herbal medicine. J
Ethnopharmacol. 258:1128952020. View Article : Google Scholar : PubMed/NCBI
|
7
|
Du N, Xu Z, Gao M, Liu P, Sun B and Cao X:
Combination of Ginsenoside Rg1 and Astragaloside IV reduces
oxidative stress and inhibits TGF-β1/Smads signaling cascade on
renal fibrosis in rats with diabetic nephropathy. Drug Des Devel
Ther. 12:3517–3524. 2018. View Article : Google Scholar : PubMed/NCBI
|
8
|
Wei Y, Wu Y, Feng K, Zhao Y, Tao R, Xu H
and Tang Y: Astragaloside IV inhibits cardiac fibrosis via
miR-135a-TRPM7-TGF-β/Smads pathway. J Ethnopharmacol.
249:1124042020. View Article : Google Scholar : PubMed/NCBI
|
9
|
Lin J, Pan X, Huang C, Gu M, Chen X, Zheng
X, Shao Z, Hu S, Wang B, Lin H, et al: Dual regulation of microglia
and neurons by Astragaloside IV-mediated mTORC1 suppression
promotes functional recovery after acute spinal cord injury. J Cell
Mol Med. 24:671–685. 2020. View Article : Google Scholar : PubMed/NCBI
|
10
|
Liu H, Wei W, Sun WY and Li X: Protective
effects of astragaloside IV on porcine-serum-induced hepatic
fibrosis in rats and in vitro effects on hepatic stellate cells. J
Ethnopharmacol. 122:502–508. 2009. View Article : Google Scholar : PubMed/NCBI
|
11
|
He CS, Liu YC, Xu ZP, Dai PC, Chen XW and
Jin DH: Astragaloside IV Enhances Cisplatin Chemosensitivity in
Non-Small Cell Lung Cancer Cells Through Inhibition of B7-H3. Cell
Physiol Biochem. 40:1221–1229. 2016. View Article : Google Scholar : PubMed/NCBI
|
12
|
Li L, Gan H, Jin H, Fang Y, Yang Y, Zhang
J, Hu X and Chu L: Astragaloside IV promotes microglia/macrophages
M2 polarization and enhances neurogenesis and angiogenesis through
PPARγ pathway after cerebral ischemia/reperfusion injury in rats.
Int Immunopharmacol. 92:1073352021. View Article : Google Scholar : PubMed/NCBI
|
13
|
Li M, Li H, Fang F, Deng X and Ma S:
Astragaloside IV attenuates cognitive impairments induced by
transient cerebral ischemia and reperfusion in mice via
anti-inflammatory mechanisms. Neurosci Lett. 639:114–119. 2017.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Nie Q, Zhu L, Zhang L, Leng B and Wang H:
Astragaloside IV protects against hyperglycemia-induced vascular
endothelial dysfunction by inhibiting oxidative stress and
Calpain-1 activation. Life Sci. 232:1166622019. View Article : Google Scholar : PubMed/NCBI
|
15
|
Rodríguez-Jiménez FJ and Moreno-Manzano V:
Modulation of hypoxia-inducible factors (HIF) from an integrative
pharmacological perspective. Cell Mol Life Sci. 69:519–534. 2012.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Souvenir R, Flores JJ, Ostrowski RP,
Manaenko A, Duris K and Tang J: Erythropoietin inhibits HIF-1α
expression via upregulation of PHD-2 transcription and translation
in an in vitro model of hypoxia-ischemia. Transl Stroke Res.
5:118–127. 2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhu Y, Ma WQ, Han XQ, Wang Y, Wang X and
Liu NF: Advanced glycation end products accelerate calcification in
VSMCs through HIF-1α/PDK4 activation and suppress glucose
metabolism. Sci Rep. 8:137302018. View Article : Google Scholar : PubMed/NCBI
|
18
|
Chen J, Cui B, Fan Y, Li X, Li Q, Du Y,
Feng Y and Zhang P: Protein kinase D1 regulates hypoxic metabolism
through HIF-1α and glycolytic enzymes incancer cells. Oncol Rep.
40:1073–1082. 2018.PubMed/NCBI
|
19
|
Li Y, Liu Y, Wang C, Xia WR, Zheng JY,
Yang J, Liu B, Liu JQ and Liu LF: Succinate induces synovial
angiogenesis in rheumatoid arthritis through metabolic remodeling
and HIF-1α/VEGF axis. Free Radic Biol Med. 126:1–14. 2018.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Malgoyre A, Chabert C, Tonini J, Koulmann
N, Bigard X and Sanchez H: Alterations to mitochondrial fatty-acid
use in skeletal muscle after chronic exposure to hypoxia depend on
metabolic phenotype. J Appl Physiol (1985). 122:666–674. 2017.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Thiersch M, Rimann M, Panagiotopoulou V,
Öztürk E, Biedermann T, Textor M, Lühmann TC and Hall H: The
angiogenic response to PLL-g-PEG-mediated HIF-1α plasmid DNA
delivery in healthy and diabetic rats. Biomaterials. 34:4173–4182.
2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Tan JT, Prosser HC, Vanags LZ, Monger SA,
Ng MK and Bursill CA: High-density lipoproteins augment
hypoxia-induced angiogenesis via regulation of post-translational
modulation of hypoxia-inducible factor 1α. FASEB J. 28:206–217.
2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Xu Y, Zuo Y, Zhang H, Kang X, Yue F, Yi Z,
Liu M, Yeh ET, Chen G and Cheng J: Induction of SENP1 in
endothelial cells contributes to hypoxia-driven VEGF expression and
angiogenesis. J Biol Chem. 285:36682–36688. 2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Spirli C, Villani A, Mariotti V, Fabris L,
Fiorotto R and Strazzabosco M: Posttranslational regulation of
polycystin-2 protein expression as a novel mechanism of
cholangiocyte reaction and repair from biliary damage. Hepatology.
62:1828–1839. 2015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wang X, Liang X, Liang H and Wang B:
SENP1/HIF-1α feedback loop modulates hypoxia-induced cell
proliferation, invasion, and EMT in human osteosarcoma cells. J
Cell Biochem. 119:1819–1826. 2018. View Article : Google Scholar : PubMed/NCBI
|
26
|
Mao H and Xu G: Soft tissue repair for
tibialis anterior tendon ruptures using plate and screw fixation
technique in combination with anterolateral thigh flaps
transplantation. J Orthop Surg Res. 10:1432015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Blume PA, Donegan R and Schmidt BM: The
role of plastic surgery for soft tissue coverage of the diabetic
foot and ankle. Clin Podiatr Med Surg. 31:127–150. 2014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Wang Y, Chen SY, Gao WY, Ding J, Shi W,
Feng XL, Tao XY, Wang L and Ling DS: Experimental study of survival
of pedicled perforator flap with flow-through and flow-end blood
supply. Br J Surg. 102:375–381. 2015. View
Article : Google Scholar : PubMed/NCBI
|
29
|
Xi S, Cheng S, Lou J, Qiu L, Yang Q, Yu W,
Mei J and Tang M: A Preliminary Study of the Effects of Venous
Drainage Position on Arterial Blood Supply and Venous Return within
the Conjoined Flap. Plast Reconstr Surg. 143:322e–328e. 2019.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Kocak OF, Bozan N, Oksuz M, Yuce S, Demir
CY, Bulut G and Ragbetli MC: The Effect of the Active Ingredient
Thymoquinone on Flap Viability in Random Pattern Flaps in Rats. J
Membr Biol. 249:513–522. 2016. View Article : Google Scholar : PubMed/NCBI
|
31
|
Zhang EW, Fang T, Arnold PB, Songcharoen
SJ, Lineaweaver WC and Zhang F: The Effect of Activated Protein C
on Attenuation of Ischemia-Reperfusion Injury in a Rat Muscle Flap
Model. Ann Plast Surg. 75:448–454. 2015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Hsu CE, Shyu VB, Wen CJ, Wei FC, Huang XT
and Cheng HY: The rat groin flap model redesigned for evaluating
treatment effects on ischemia-reperfusion injury. J Surg Res.
222:160–166. 2018. View Article : Google Scholar : PubMed/NCBI
|
33
|
Venardos KM, Rajapakse NW, Williams D, Hoe
LS, Peart JN and Kaye DM: Cardio-protective effects of combined
l-arginine and insulin: Mechanism and therapeutic actions in
myocardial ischemia-reperfusion injury. Eur J Pharmacol. 769:64–70.
2015. View Article : Google Scholar : PubMed/NCBI
|
34
|
Menazza S, Sun J, Appachi S, Chambliss KL,
Kim SH, Aponte A, Khan S, Katzenellenbogen JA, Katzenellenbogen BS,
Shaul PW, et al: Non-nuclear estrogen receptor alpha activation in
endothelium reduces cardiac ischemia-reperfusion injury in mice. J
Mol Cell Cardiol. 107:41–51. 2017. View Article : Google Scholar : PubMed/NCBI
|
35
|
Wu DM, Liu Y, Duan WQ and Cen Y: Effects
of connective tissue growth factor on angiogenesis of random skin
flaps in rats. Sichuan Da Xue Xue Bao Yi Xue Ban. 39:111–113.
2008.(In Chinese). PubMed/NCBI
|
36
|
Chen F, Liu Q, Zhang ZD and Zhu XH:
Co-delivery of G-CSF and EPO released from fibrin gel for
therapeutic neovascularization in rat hindlimb ischemia model.
Microcirculation. 20:416–424. 2013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Esposito E, Hayakawa K, Ahn BJ, Chan SJ,
Xing C, Liang AC, Kim KW, Arai K and Lo EH: Effects of ischemic
post-conditioning on neuronal VEGF regulation and microglial
polarization in a rat model of focal cerebral ischemia. J
Neurochem. 146:160–172. 2018. View Article : Google Scholar : PubMed/NCBI
|
38
|
You L, Fang Z, Shen G, Wang Q, He Y, Ye S,
Wang L, Hu M, Lin Y, Liu M, et al: Astragaloside IV prevents high
glucose induced cell apoptosis and inflammatory reactions through
inhibition of the JNK pathway in human umbilical vein endothelial
cells. Mol Med Rep. 19:1603–1612. 2019.PubMed/NCBI
|
39
|
Cheng S, Zhang X, Feng Q, Chen J, Shen L,
Yu P, Yang L, Chen D, Zhang H, Sun W, et al: Astragaloside IV
exerts angiogenesis and cardioprotection after myocardial
infarction via regulating PTEN/PI3K/Akt signaling pathway. Life
Sci. 227:82–93. 2019. View Article : Google Scholar : PubMed/NCBI
|
40
|
Liu R, Jiang H, Tian Y, Zhao W and Wu X:
Astragaloside IV protects against polymicrobial sepsis through
inhibiting inflammatory response and apoptosis of lymphocytes. J
Surg Res. 200:315–323. 2016. View Article : Google Scholar : PubMed/NCBI
|
41
|
Li H, Wang P, Huang F, Jin J, Wu H, Zhang
B, Wang Z, Shi H and Wu X: Astragaloside IV protects blood-brain
barrier integrity from LPS-induced disruption via activating Nrf2
antioxidant signaling pathway in mice. Toxicol Appl Pharmacol.
340:58–66. 2018. View Article : Google Scholar : PubMed/NCBI
|
42
|
Jiang XG, Sun K, Liu YY, Yan L, Wang MX,
Fan JY, Mu HN, Li C, Chen YY, Wang CS, et al: Astragaloside IV
ameliorates 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced
colitis implicating regulation of energy metabolism. Sci Rep.
7:418322017. View Article : Google Scholar : PubMed/NCBI
|
43
|
Costa IM, Lima FOV, Fernandes LCB, Norrara
B, Neta FI, Alves RD, Cavalcanti JRLP, Lucena EES, Cavalcante JS,
Rego ACM, et al: Astragaloside IV Supplementation Promotes A
Neuroprotective Effect in Experimental Models of Neurological
Disorders: A Systematic Review. Curr Neuropharmacol. 17:648–665.
2019. View Article : Google Scholar : PubMed/NCBI
|
44
|
Wang S, Mou J, Cui L, Wang X and Zhang Z:
Astragaloside IV inhibits cell proliferation of colorectal cancer
cell lines through down-regulation of B7-H3. Biomed Pharmacother.
102:1037–1044. 2018. View Article : Google Scholar : PubMed/NCBI
|
45
|
Menendez MT, Teygong C, Wade K, Florimond
C and Blader IJ: siRNA Screening Identifies the Host Hexokinase 2
(HK2) Gene as an Important Hypoxia-Inducible Transcription Factor 1
(HIF-1) Target Gene in Toxoplasma gondii-Infected Cells. MBio.
6:e004622015. View Article : Google Scholar : PubMed/NCBI
|
46
|
Xiong A and Liu Y: Targeting Hypoxia
Inducible Factors-1α As a Novel Therapy in Fibrosis. Front
Pharmacol. 8:3262017. View Article : Google Scholar : PubMed/NCBI
|
47
|
Tirpe AA, Gulei D, Ciortea SM, Crivii C
and Berindan-Neagoe I: Hypoxia: Overview on Hypoxia-Mediated
Mechanisms with a Focus on the Role of HIF Genes. Int J Mol Sci.
20:61402019. View Article : Google Scholar
|
48
|
Kuschel A, Simon P and Tug S: Functional
regulation of HIF-1α under normoxia--is there more than
post-translational regulation? J Cell Physiol. 227:514–524. 2012.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Albanese A, Daly LA, Mennerich D,
Kietzmann T and Sée V: The Role of Hypoxia-Inducible Factor
Post-Translational Modifications in Regulating Its Localisation,
Stability, and Activity. Int J Mol Sci. 22:222020. View Article : Google Scholar
|
50
|
Chachami G, Stankovic-Valentin N,
Karagiota A, Basagianni A, Plessmann U, Urlaub H, Melchior F and
Simos G: Hypoxia-induced Changes in SUMO Conjugation Affect
Transcriptional Regulation Under Low Oxygen. Mol Cell Proteomics.
18:1197–1209. 2019. View Article : Google Scholar
|
51
|
van Hagen M, Overmeer RM, Abolvardi SS and
Vertegaal AC: RNF4 and VHL regulate the proteasomal degradation of
SUMO-conjugated Hypoxia-Inducible Factor-2alpha. Nucleic Acids Res.
38:1922–1931. 2010. View Article : Google Scholar : PubMed/NCBI
|
52
|
Nie Q, Zhu L, Zhang L, Leng B and Wang H:
Astragaloside IV protects against hyperglycemia-induced vascular
endothelial dysfunction by inhibiting oxidative stress and
Calpain-1 activation. Life Sci. 232:1166622019. View Article : Google Scholar : PubMed/NCBI
|
53
|
Leng B, Tang F, Lu M, Zhang Z, Wang H and
Zhang Y: Astragaloside IV improves vascular endothelial dysfunction
by inhibiting the TLR4/NF-κB signaling pathway. Life Sci.
209:111–121. 2018. View Article : Google Scholar : PubMed/NCBI
|
54
|
Zhang W-D, Zhang C, Wang XH, Gao PJ, Zhu
DL, Chen H, Liu RH and Li HL: Astragaloside IV dilates aortic
vessels from normal and spontaneously hypertensive rats through
endothelium-dependent and endothelium-independent ways. Planta Med.
72:621–626. 2006. View Article : Google Scholar : PubMed/NCBI
|