Severe acute respiratory syndrome coronavirus 2 for physicians: Molecular characteristics and host immunity (Review)
- Authors:
- Jin Shang
- Lingyao Du
- Ning Han
- Duoduo Lv
- Jiayi Wang
- Hailing Yang
- Lang Bai
- Hong Tang
-
Affiliations: Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China, West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China, Graduate Program in Cellular and Molecular Physiology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA - Published online on: February 8, 2021 https://doi.org/10.3892/mmr.2021.11901
- Article Number: 262
-
Copyright: © Shang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, et al: A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 382:727–733. 2020. View Article : Google Scholar : PubMed/NCBI | |
Andersen KG, Rambaut A, Lipkin WI, Holmes EC and Garry RF: The proximal origin of SARS-CoV-2. Nat Med. 26:450–452. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, et al: Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet. 395:565–574. 2020. View Article : Google Scholar : PubMed/NCBI | |
Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu L, Shan H, Lei CL, Hui DSC, et al: Clinical characteristics of coronavirus disease 2019 in ChinaN. Engl J Med. 382:1708–1720. 2020. View Article : Google Scholar | |
Belouzard S, Millet JK, Licitra BN and Whittaker GR: Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses. 4:1011–1033. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cui J, Li F and Shi ZL: Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 17:181–192. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kahn JS and McIntosh K: History and recent advances in coronavirus discovery. Pediatr Infect Dis J. 24 (Suppl 11):S223–S227. 2005. View Article : Google Scholar : PubMed/NCBI | |
de Wit E, van Doremalen N, Falzarano D and Munster VJ: SARS and MERS: Recent insights into emerging coronaviruses. Nat Rev Microbiol. 14:523–534. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yin Y and Wunderink RG: MERS, SARS and other coronaviruses as causes of pneumonia. Respirology. 23:130–137. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tan WJ, Zhao X, Ma XJ, Wang WL, Niu PH, Xu W, Gao GF and Wu GH: A novel coronavirus genome identified in a cluster of pneumonia cases-Wuhan, China 2019–2020. China CDC Weekly. 2:61–62. 2020. View Article : Google Scholar | |
Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, et al: A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 579:270–273. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gralinski LE and Menachery VD: Return of the coronavirus: 2019-nCoV. Viruses. 12:1352020. View Article : Google Scholar | |
Perlman S and Netland J: Coronaviruses post-SARS: Update on replication and pathogenesis. Nat Rev Microbiol. 7:439–450. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chan JF, Kok KH, Zhu Z, Chu H, To KK, Yuan S and Yuen KY: Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect. 9:221–236. 2020. View Article : Google Scholar : PubMed/NCBI | |
Harrison SC: Viral membrane fusion. Nat Struct Mol Biol. 15:690–698. 2008. View Article : Google Scholar : PubMed/NCBI | |
Gao Q, Bao L, Mao H, Wang L, Xu K, Yang M, Li Y, Zhu L, Wang N, Lv Z, et al: Development of an inactivated vaccine candidate for SARS-CoV-2. Science. 369:77–81. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wan Y, Shang J, Graham R, Baric RS and Li F: Receptor recognition by the novel coronavirus from wuhan: An analysis based on decade-long structural studies of SARS coronavirus. J Virol. 94:e001272020. View Article : Google Scholar : PubMed/NCBI | |
Ali A and Vijayan R: Dynamics of the ACE2-SARS-CoV-2/SARS-CoV spike protein interface reveal unique mechanisms. Sci Rep. 10:142142020. View Article : Google Scholar : PubMed/NCBI | |
Li F: Structure, function, and evolution of coronavirus spike proteins. Annu Rev Virol. 3:237–261. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, O'Meara MJ, Rezelj VV, Guo JZ, Swaney DL, et al: A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 583:459–468. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yount B, Roberts RS, Sims AC, Deming D, Frieman MB, Sparks J, Denison MR, Davis N and Baric RS: Severe acute respiratory syndrome coronavirus group-specific open reading frames encode nonessential functions for replication in cell cultures and mice. J Virol. 79:14909–14922. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kopecky-Bromberg SA, Martínez-Sobrido L, Frieman M, Baric RA and Palese P: Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J Virol. 81:548–557. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wu A, Peng Y, Huang B, Ding X, Wang X, Niu P, Meng J, Zhu Z, Zhang Z, Wang J, et al: Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe. 27:325–328. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ceraolo C and Giorgi F: Genomic variance of the 2019-nCoV coronavirus. J Med Virol. 92:522–528. 2020. View Article : Google Scholar : PubMed/NCBI | |
Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK, Bleicker T, Brünink S, Schneider J, Schmidt ML, et al: Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 25:20000452020. View Article : Google Scholar | |
Yu F, Du L, Ojcius DM, Pan C and Jiang S: Measures for diagnosing and treating infections by a novel coronavirus responsible for a pneumonia outbreak originating in Wuhan, China. Microbes Infect. 22:74–79. 2020. View Article : Google Scholar : PubMed/NCBI | |
Schoeman D and Fielding B: Coronavirus envelope protein: Current knowledge. Virol J. 16:692019. View Article : Google Scholar : PubMed/NCBI | |
Morse JS, Lalonde T, Xu S and Liu W: Learning from the past: Possible urgent prevention and treatment options for severe acute respiratory infections caused by 2019-nCoV. Chembiochem. 21:730–738. 2020. View Article : Google Scholar : PubMed/NCBI | |
Rockx B, Kuiken T, Herfst S, Bestebroer T, Lamers MM, Oude Munnink BB, de Meulder D, van Amerongen G, van den Brand J, Okba NMA, et al: Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science. 368:1012–1015. 2020. View Article : Google Scholar : PubMed/NCBI | |
Petrosillo N, Viceconte G, Ergonul O, Ippolito G and Petersen E: COVID-19, SARS and MERS: Are they closely related? Clin Microbiol Infect. 26:729–734. 2020. View Article : Google Scholar : PubMed/NCBI | |
Petersen E, Koopmans M, Go U, Hamer DH, Petrosillo N, Castelli F, Storgaard M, Al Khalili S and Simonsen L: Comparing SARS-CoV-2 with SARS-CoV and influenza pandemics. Lancet Infect Dis. 20:e238–e244. 2020. View Article : Google Scholar : PubMed/NCBI | |
Memish ZA, Zumla AI, Al-Hakeem RF, Al-Rabeeah AA and Stephens GM: Family cluster of Middle East respiratory syndrome coronavirus infections. N Engl J Med. 368:2487–2494. 2013. View Article : Google Scholar : PubMed/NCBI | |
Arabi YM, Balkhy HH, Hayden FG, Bouchama A, Luke T, Baillie JK, Al-Omari A, Hajeer AH, Senga M, Denison MR, et al: Middle East respiratory syndrome. N Engl J Med. 376:584–594. 2017. View Article : Google Scholar : PubMed/NCBI | |
Memish ZA, Al-Tawfiq JA, Makhdoom HQ, Assiri A, Alhakeem RF, Albarrak A, Alsubaie S, Al-Rabeeah AA, Hajomar WH, Hussain R, et al: Respiratory tract samples, viral load, and genome fraction yield in patients with Middle East respiratory syndrome. J Infect Dis. 210:1590–1594. 2014. View Article : Google Scholar : PubMed/NCBI | |
Park J, Jung S, Kim A and Park JE: MERS transmission and risk factors: A systematic review. BMC Public Health. 18:5742018. View Article : Google Scholar : PubMed/NCBI | |
Fani M, Teimoori A and Ghafari S: Comparison of the COVID-2019 (SARS-CoV-2) pathogenesis with SARS-CoV and MERS-CoV infections. Future Virol. 15:2020. View Article : Google Scholar | |
Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, et al: Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 323:1061–1069. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen T, Wu D, Chen H, Yan W, Yang D, Chen G, Ma K, Xu D, Yu H, Wang H, et al: Clinical characteristics of 113 deceased patients with coronavirus disease 2019: Retrospective study. BMJ. 368:m10912020. View Article : Google Scholar : PubMed/NCBI | |
Su S, Wong G, Shi W, Liu J, Lai ACK, Zhou J, Liu W, Bi Y and Gao GF: Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol. 24:490–502. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wevers BA and van der Hoek L: Recently discovered human coronaviruses. Clin Lab Med. 29:715–724. 2009. View Article : Google Scholar : PubMed/NCBI | |
Xu X, Chen P, Wang J, Feng J, Zhou H, Li X, Zhong W and Hao P: Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci China Life Sci. 63:457–460. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ren LL, Wang YM, Wu ZQ, Xiang ZC, Guo L, Xu T, Jiang YZ, Xiong Y, Li YJ, Li XW, et al: Identification of a novel coronavirus causing severe pneumonia in human: A descriptive study. Chin Med J (Engl). 133:1015–1024. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Kang Z, Gong H, Xu D, Wang J, Li Z, Cui X, Xiao J, Meng T, Zhou W, et al: The digestive system is a potential route of 2019-nCov infection: A bioinformatics analysis based on single-cell transcriptomes. bioRxiv. 2020. | |
Zou X, Chen K, Zou J, Han P, Hao J and Han Z: Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 14:185–192. 2020. View Article : Google Scholar : PubMed/NCBI | |
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, et al: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 395:497–506. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shi H, Han X, Jiang N, Cao Y, Alwalid O, Gu J, Fan Y and Zheng C: Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: A descriptive study. Lancet Infect Dis. 20:425–434. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, Ren R, Leung KSM, Lau EHY, Wong JY, et al: Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 382:1199–1207. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, et al: Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet. 395:507–513. 2020. View Article : Google Scholar : PubMed/NCBI | |
Loeffelholz MJ and Tang YW: Laboratory diagnosis of emerging human coronavirus infections-the state of the art. Emerg Microbes Infect. 9:747–756. 2020. View Article : Google Scholar : PubMed/NCBI | |
To KK, Tsang OT, Yip CC, Chan KH, Wu TC, Chan JM, Leung WS, Chik TS, Choi CY, Kandamby DH, et al: Consistent detection of 2019 novel coronavirus in saliva. Clin Infect Dis. 71:841–843. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhao B, Ni C, Gao R, Wang Y, Yang L, Wei J, Lv T, Liang J, Zhang Q, Xu W, et al: Recapitulation of SARS-CoV-2 infection and cholangiocyte damage with human liver ductal organoids. Protein Cell. 11:771–775. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chai X, Hu L, Zhang Y, Han W, Lu Z, Ke A, Zhou J, Shi G, Fang N, Fan J, et al: Specific ACE2 expression in cholangiocytes may cause liver damage after 2019-nCoV infection. bioRxiv. 2020. | |
Leung WK, To KF, Chan PK, Chan HL, Wu AK, Lee N, Yuen KY and Sung JJ: Enteric involvement of severe acute respiratory syndrome-associated coronavirus infection. Gastroenterology. 125:1011–1017. 2003. View Article : Google Scholar : PubMed/NCBI | |
Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, Spitters C, Ericson K, Wilkerson S, Tural A, et al: First case of 2019 novel coronavirus in the United States. N Engl J Med. 382:929–936. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lin W, Hu L, Zhang Y, Ooi JD, Meng T, Jin P, Ding X, Peng L, Song L, Xiao Z, et al: Single-cell analysis of ACE2 expression in human kidneys and bladders reveals a potential route of 2019-nCoV infection. bioRxiv: 2020.02.08.939892. 2020. View Article : Google Scholar | |
Fan C, Li K, Ding Y, Lu WL and Wang J: ACE2 expression in kidney and testis may cause kidney and testis damage after 2019-nCoV infection. medRxiv: 2020.02.12.20022418. 2020. View Article : Google Scholar | |
Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, Liu S, Zhao P, Liu H, Zhu L, et al: Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 8:420–422. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tian S, Xiong Y, Liu H, Niu L, Guo J, Liao M and Xiao SY: Pathological study of the 2019 novel coronavirus disease (COVID-19) through postmortem core biopsies. Mod Pathol. 33:1007–1014. 2020. View Article : Google Scholar : PubMed/NCBI | |
Peiris JS, Chu CM, Cheng VC, Chan KS, Hung IF, Poon LL, Law KI, Tang BS, Hon TY, Chan CS, et al: Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: A prospective study. Lancet. 361:1767–1772. 2003. View Article : Google Scholar : PubMed/NCBI | |
Drosten C, Günther S, Preiser W, van der Werf S, Brodt HR, Becker S, Rabenau H, Panning M, Kolesnikova L, Fouchier RA, et al: Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med. 348:1967–1976. 2003. View Article : Google Scholar : PubMed/NCBI | |
Tang P, Louie M, Richardson SE, Smieja M, Simor AE, Jamieson F, Fearon M, Poutanen SM, Mazzulli T, Tellier R, et al: Interpretation of diagnostic laboratory tests for severe acute respiratory syndrome: The Toronto experience. CMAJ. 170:47–54. 2004.PubMed/NCBI | |
Pitzer VE, Leung GM and Lipsitch M: Estimating variability in the transmission of severe acute respiratory syndrome to household contacts in Hong Kong, China. Am J Epidemiol. 166:355–363. 2007. View Article : Google Scholar : PubMed/NCBI | |
Tang JW, To KF, Lo AW, Sung JJ, Ng HK and Chan PK: Quantitative temporal-spatial distribution of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) in post-mortem tissues. J Med Virol. 79:1245–1253. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lo YM: SARS diagnosis, monitoring and prognostication by SARS-coronavirus RNA detection. Hong Kong Med J. 15 (Suppl 8):S11–S14. 2009. | |
Mahase E: China coronavirus: Mild but infectious cases may make it hard to control outbreak, report warns. BMJ. 368(m325)2020. | |
Zhu N, Wang W, Liu Z, Liang C, Wang W, Ye F, Huang B, Zhao L, Wang H, Zhou W, et al: Morphogenesis and cytopathic effect of SARS-CoV-2 infection in human airway epithelial cells. Nat Commun. 11:39102020. View Article : Google Scholar : PubMed/NCBI | |
Kai H and Kai M: Interactions of coronaviruses with ACE2, angiotensin II, and RAS inhibitors-lessons from available evidence and insights into COVID-19. Hypertens Res. 43:648–654. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lee HK, Tso EY, Chau TN, Tsang OT, Choi KW and Lai TS: Asymptomatic severe acute respiratory syndrome-associated coronavirus infection. Emerg Infect Dis. 9:1491–1492. 2003. View Article : Google Scholar : PubMed/NCBI | |
Che XY, Di B, Zhao GP, Wang YD, Qiu LW, Hao W, Wang M, Qin PZ, Liu YF, Chan KH, et al: A patient with asymptomatic severe acute respiratory syndrome (SARS) and antigenemia from the 2003–2004 community outbreak of SARS in Guangzhou, China. Clin Infect Dis. 43:e1–e5. 2006. View Article : Google Scholar : PubMed/NCBI | |
Cowling BJ, Park M, Fang VJ, Wu P, Leung GM and Wu JT: Preliminary epidemiological assessment of MERS-CoV outbreak in South Korea, May to June 2015. Euro Surveill. 20:7–13. 2015. View Article : Google Scholar : PubMed/NCBI | |
Al-Tawfiq JA: Asymptomatic coronavirus infection: MERS-CoV and SARS-CoV-2 (COVID-19). Travel Med Infect Dis. 35:1016082020. View Article : Google Scholar : PubMed/NCBI | |
Wölfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Müller MA, Niemeyer D, Jones TC, Vollmar P, Rothe C, et al: Virological assessment of hospitalized patients with COVID-2019. Nature. 581:465–469. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yu X and Yang R: COVID-19 transmission through asymptomatic carriers is a challenge to containment. Influenza Other Respir Viruses. 14:474–475. 2020. View Article : Google Scholar : PubMed/NCBI | |
Toyoshima Y, Nemoto K, Matsumoto S, Nakamura Y and Kiyotani K: SARS-CoV-2 genomic variations associated with mortality rate of COVID-19. J Hum Genet. 1–8. Jul 22–2020.(Online ahead of print). | |
Liang W, Guan W, Chen R, Wang W, Li J, Xu K, Li C, Ai Q, Lu W, Liang H, et al: Cancer patients in SARS-CoV-2 infection: A nationwide analysis in China. Lancet Oncol. 21:335–337. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Zhu F, Xie L, Wang C, Wang J, Chen R, Jia P, Guan HQ, Peng L, Chen Y, et al: Clinical characteristics of COVID-19-infected cancer patients: A retrospective case study in three hospitals within Wuhan, China. Ann Oncol. 31:894–901. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lian J, Jin X, Hao S, Cai H, Zhang S, Zheng L, Jia H, Hu J, Gao J, Zhang Y, et al: Analysis of epidemiological and clinical features in older patients with coronavirus disease 2019 (COVID-19) outside Wuhan. Clin Infect Dis. 71:740–747. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lei X, Dong X, Ma R, Wang W, Xiao X, Tian Z, Wang C, Wang Y, Li L, Ren L, et al: Activation and evasion of type I interferon responses by SARS-CoV-2. Nat Commun. 11:38102020. View Article : Google Scholar : PubMed/NCBI | |
Mossel EC, Huang C, Narayanan K, Makino S, Tesh RB and Peters CJ: Exogenous ACE2 expression allows refractory cell lines to support severe acute respiratory syndrome coronavirus replication. J Virol. 79:3846–3850. 2005. View Article : Google Scholar : PubMed/NCBI | |
Cai G: Tobacco-use disparity in gene expression of ACE2, the receptor of 2019-nCov. medRxiv. 2020. | |
Bergmann CC, Lane T and Stohlman SA: Coronavirus infection of the central nervous system: Host-virus stand-off. Nat Rev Microbiol. 4:121–132. 2006. View Article : Google Scholar : PubMed/NCBI | |
Takeuchi O and Akira S: Innate immunity to virus infection. Immunol Rev. 227:75–86. 2009. View Article : Google Scholar : PubMed/NCBI | |
Fung TS and Liu DX: Human coronavirus: Host-pathogen interaction. Annu Rev Microbiol. 73:529–557. 2019. View Article : Google Scholar : PubMed/NCBI | |
Perlman S and Dandekar AA: Immunopathogenesis of coronavirus infections: Implications for SARS. Nat Rev Immunol. 5:917–927. 2005. View Article : Google Scholar : PubMed/NCBI | |
Newton AH, Cardani A and Braciale TJ: The host immune response in respiratory virus infection: Balancing virus clearance and immunopathology. Semin Immunopathol. 38:471–482. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li SW, Wang CY, Jou YJ, Huang SH, Hsiao LH, Wan L, Lin YJ, Kung SH and Lin CW: SARS coronavirus papain-like protease inhibits the TLR7 signaling pathway through removing Lys63-linked polyubiquitination of TRAF3 and TRAF6. Int J Mol Sci. 17:6782016. View Article : Google Scholar | |
Cervantes-Barragan L, Lewis K, Firner S, Thiel V, Hugues S, Reith W, Ludewig B and Reizis B: Plasmacytoid dendritic cells control T-cell response to chronic viral infection. Proc Natl Acad Sci USA. 109:3012–3017. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li H, Wang YM, Xu JY and Cao B: Potential antiviral therapeutics for 2019 novel coronavirus. Zhonghua Jie He He Hu Xi Za Zhi. 43:E002Jul 23–2020.(Epub ahead of print) (In Chinese). PubMed/NCBI | |
Versteeg GA, Bredenbeek PJ, van den Worm SH and Spaan WJ: Group 2 coronaviruses prevent immediate early interferon induction by protection of viral RNA from host cell recognition. Virology. 361:18–26. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lui PY, Wong LY, Fung CL, Siu KL, Yeung ML, Yuen KS, Chan CP, Woo PC, Yuen KY and Jin DY: Middle East respiratory syndrome coronavirus M protein suppresses type I interferon expression through the inhibition of TBK1-dependent phosphorylation of IRF3. Emerg Microbes Infect. 5:e392016. View Article : Google Scholar : PubMed/NCBI | |
Siu KL, Chan CP, Kok KH, Chiu-Yat Woo P and Jin DY: Suppression of innate antiviral response by severe acute respiratory syndrome coronavirus M protein is mediated through the first transmembrane domain. Cell Mol Immunol. 11:141–149. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cheung CY, Poon LL, Ng IH, Luk W, Sia SF, Wu MH, Chan KH, Yuen KY, Gordon S, Guan Y and Peiris JS: Cytokine responses in severe acute respiratory syndrome coronavirus-infected macrophages in vitro: Possible relevance to pathogenesis. J Virol. 79:7819–7826. 2005. View Article : Google Scholar : PubMed/NCBI | |
Law HK, Cheung CY, Ng HY, Sia SF, Chan YO, Luk W, Nicholls JM, Peiris JS and Lau YL: Chemokine up-regulation in SARS-coronavirus-infected, monocyte-derived human dendritic cells. Blood. 106:2366–2374. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wong CK, Lam C, Wu AK, Ip WK, Lee NL, Chan IH, Lit LC, Hui DS, Chan MH, Chung SS and Sung JJ: Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin Exp Immunol. 136:95–103. 2004. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Li J, Zhan Y, Wu L, Yu X, Zhang W, Ye L, Xu S, Sun R, Wang Y and Lou J: Analysis of serum cytokines in patients with severe acute respiratory syndrome. Infect Immun. 72:4410–4415. 2004. View Article : Google Scholar : PubMed/NCBI | |
Tynell J, Westenius V, Rönkkö E, Munster VJ, Melén K, Österlund P and Julkunen I: Middle East respiratory syndrome coronavirus shows poor replication but significant induction of antiviral responses in human monocyte-derived macrophages and dendritic cells. J Gen Virol. 97:344–355. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Chu H, Li C, Wong BH, Cheng ZS, Poon VK, Sun T, Lau CC, Wong KK, Chan JY, et al: Active replication of Middle East respiratory syndrome coronavirus and aberrant induction of inflammatory cytokines and chemokines in human macrophages: Implications for pathogenesis. J Infect Dis. 209:1331–1342. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lau SKP, Lau CCY, Chan KH, Li CPY, Chen H, Jin DY, Chan JFW, Woo PCY and Yuen KY: Delayed induction of proinflammatory cytokines and suppression of innate antiviral response by the novel Middle East respiratory syndrome coronavirus: Implications for pathogenesis and treatment. J Gen Virol. 94:2679–2690. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kim ES, Choe PG, Park WB, Oh HS, Kim EJ, Nam EY, Na SH, Kim M, Song KH, Bang JH, et al: Clinical progression and cytokine profiles of Middle East respiratory syndrome coronavirus infection. J Korean Med Sci. 31:1717–1725. 2016. View Article : Google Scholar : PubMed/NCBI | |
Min CK, Cheon S, Ha NY, Sohn KM, Kim Y, Aigerim A, Shin HM, Choi JY, Inn KS, Kim JH, et al: Comparative and kinetic analysis of viral shedding and immunological responses in MERS patients representing a broad spectrum of disease severity. Sci Rep. 6:253592016. View Article : Google Scholar : PubMed/NCBI | |
Wong RS, Wu A, To KF, Lee N, Lam CW, Wong CK, Chan PK, Ng MH, Yu LM, Hui DS, et al: Haematological manifestations in patients with severe acute respiratory syndrome: Retrospective analysis. BMJ. 326:1358–1362. 2003. View Article : Google Scholar : PubMed/NCBI | |
Li T, Qiu Z, Zhang L, Han Y, He W, Liu Z, Ma X, Fan H, Lu W, Xie J, et al: Significant changes of peripheral T lymphocyte subsets in patients with severe acute respiratory syndrome. J Infect Dis. 189:648–651. 2004. View Article : Google Scholar : PubMed/NCBI | |
Cui W, Fan Y, Wu W, Zhang F, Wang JY and Ni AP: Expression of lymphocytes and lymphocyte subsets in patients with severe acute respiratory syndrome. Clin Infect Dis. 37:857–859. 2003. View Article : Google Scholar : PubMed/NCBI | |
Assiri A, Al-Tawfiq JA, Al-Rabeeah AA, Al-Rabiah FA, Al-Hajjar S, Al-Barrak A, Flemban H, Al-Nassir WN, Balkhy HH, Al-Hakeem RF, et al: Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: A descriptive study. Lancet Infect Dis. 13:752–761. 2013. View Article : Google Scholar : PubMed/NCBI | |
Usul E, Şan İ, Bekgöz B and Şahin A: The role of hematological parameters in COVID-19 patients in the emergency room. Biomark Med. 14:1207–1215. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cai C, Zeng X, Ou AH, Huang Y and Zhang X: Study on T cell subsets and their activated molecules from the convalescent SARS patients during two follow-up surveys. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 20:322–324. 2004.(In Chinese). PubMed/NCBI | |
Yu XY, Zhang YC, Han CW, Wang P, Xue XJ and Cong YL: Change of T lymphocyte and its activated subsets in SARS patients. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 25:542–546. 2003.(In Chinese). PubMed/NCBI | |
van den Brand JM, Haagmans BL, van Riel D, Osterhaus AD and Kuiken T: The pathology and pathogenesis of experimental severe acute respiratory syndrome and influenza in animal models. J Comp Pathol. 151:83–112. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gretebeck LM and Subbarao K: Animal models for SARS and MERS coronaviruses. Curr Opin Virol. 13:123–129. 2015. View Article : Google Scholar : PubMed/NCBI | |
Roberts A, Paddock C, Vogel L, Butler E, Zaki S and Subbarao K: Aged BALB/c mice as a model for increased severity of severe acute respiratory syndrome in elderly humans. J Virol. 79:5833–5838. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Zhao J, Legge K and Perlman S: Age-related increases in PGD(2) expression impair respiratory DC migration, resulting in diminished T cell responses upon respiratory virus infection in mice. J Clin Invest. 121:4921–4930. 2011. View Article : Google Scholar : PubMed/NCBI | |
Li T, Qiu Z, Han Y, Wang Z, Fan H, Lu W, Xie J, Ma X and Wang A: Rapid loss of both CD4+ and CD8+ T lymphocyte subsets during the acute phase of severe acute respiratory syndrome. Chin Med J (Engl). 116:985–987. 2003.PubMed/NCBI | |
Kim KD, Zhao J, Auh S, Yang X, Du P, Tang H and Fu YX: Adaptive immune cells temper initial innate responses. Nat Med. 13:1248–1252. 2007. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Peng H, Zhu Z, Li G, Huang Z, Zhao Z, Koup RA, Bailer RT and Wu C: Persistent memory CD4+ and CD8+ T-cell responses in recovered severe acute respiratory syndrome (SARS) patients to SARS coronavirus M antigen. J Gen Virol. 88:2740–2748. 2007. View Article : Google Scholar : PubMed/NCBI | |
Yang LT, Peng H, Zhu ZL, Li G, Huang ZT, Zhao ZX, Koup RA, Bailer RT and Wu CY: Long-lived effector/central memory T-cell responses to severe acute respiratory syndrome coronavirus (SARS-CoV) S antigen in recovered SARS patients. Clin Immunol. 120:171–178. 2006. View Article : Google Scholar : PubMed/NCBI | |
Peng H, Yang LT, Wang LY, Li J, Huang J, Lu ZQ, Koup RA, Bailer RT and Wu CY: Long-lived memory T lymphocyte responses against SARS coronavirus nucleocapsid protein in SARS-recovered patients. Virology. 351:466–475. 2006. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Hou J, Jiang X, Ma S, Meng M, Wang B, Zhang M, Zhang M, Tang X, Zhang F, et al: Response of memory CD8+ T cells to severe acute respiratory syndrome (SARS) coronavirus in recovered SARS patients and healthy individuals. J Immunol. 175:591–598. 2005. View Article : Google Scholar : PubMed/NCBI | |
Rodriguez-Morales AJ, Cardona-Ospina JA, Gutiérrez-Ocampo E, Villamizar-Peña R, Holguin-Rivera Y, Escalera-Antezana JP, Alvarado-Arnez LE, Bonilla-Aldana DK, Franco-Paredes C, Henao-Martinez AF, et al: Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel Med Infect Dis. 34:1016232020. View Article : Google Scholar : PubMed/NCBI | |
Zu ZY, Jiang MD, Xu PP, Chen W, Ni QQ, Lu GM and Zhang LJ: Coronavirus disease 2019 (COVID-19): A perspective from China. Radiology. 296:E15–E25. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Liu F, Li J, Zhang T, Wang D and Lan W: Clinical and CT imaging features of the COVID-19 pneumonia: Focus on pregnant women and children. J Infect. 80:e7–e13. 2020. View Article : Google Scholar : PubMed/NCBI | |
Umar A, Boisseau M, Segur MC, Begaud B and Moore N: Effect of age of Armagnac extract and duration of treatment on antithrombotic effects in a rat thrombosis model. Thromb Res. 111:185–189. 2003. View Article : Google Scholar : PubMed/NCBI | |
Gu J, Gong E, Zhang B, Zheng J, Gao Z, Zhong Y, Zou W, Zhan J, Wang S, Xie Z, et al: Multiple organ infection and the pathogenesis of SARS. J Exp Med. 202:415–424. 2005. View Article : Google Scholar : PubMed/NCBI | |
Nicholls JM, Poon LL, Lee KC, Ng WF, Lai ST, Leung CY, Chu CM, Hui PK, Mak KL, Lim W, et al: Lung pathology of fatal severe acute respiratory syndrome. Lancet. 361:1773–1778. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ng DL, Al Hosani F, Keating MK, Gerber SI, Jones TL, Metcalfe MG, Tong S, Tao Y, Alami NN, Haynes LM, et al: Clinicopathologic, immunohistochemical, and ultrastructural findings of a fatal case of middle east respiratory syndrome coronavirus infection in the United Arab Emirates, April 2014. Am J Pathol. 186:652–658. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bhatia M and Moochhala S: Role of inflammatory mediators in the pathophysiology of acute respiratory distress syndrome. J Pathol. 202:145–156. 2004. View Article : Google Scholar : PubMed/NCBI | |
Lew TW, Kwek TK, Tai D, Earnest A, Loo S, Singh K, Kwan KM, Chan Y, Yim CF, Bek SL, et al: Acute respiratory distress syndrome in critically ill patients with severe acute respiratory syndrome. JAMA. 290:374–380. 2003. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Xu J, Zhou C, Wu Z, Zhong S, Liu J, Luo W, Chen T, Qin Q and Deng P: Characterization of cytokine/chemokine profiles of severe acute respiratory syndrome. Am J Respir Crit Care Med. 171:850–857. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wuhan Municipal Health Commission, . Report of clustering pneumonia of unknown etiology in Wuhan City. Wuhan, China: 2019, http://wjw.wuhan.gov.cn/front/web/showDetail/2019123108989 | |
Vabret N, Britton GJ, Gruber C, Hegde S, Kim J, Kuksin M, Levantovsky R, Malle L, Moreira A, Park MD, et al: Immunology of COVID-19: Current state of the science. Immunity. 52:910–941. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang D, Guo R, Lei L, Liu H, Wang Y, Wang Y, Dai T, Zhang T, Lai Y, Wang J, et al: COVID-19 infection induces readily detectable morphological and inflammation-related phenotypic changes in peripheral blood monocytes, the severity of which correlate with patient outcome. medRxiv: 2020.03.24.20042655. 2020. View Article : Google Scholar | |
Cameron MJ, Bermejo-Martin JF, Danesh A, Muller MP and Kelvin DJ: Human immunopathogenesis of severe acute respiratory syndrome (SARS). Virus Res. 133:13–19. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ye Q, Wang B and Mao J: The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J Infect. 80:607–613. 2020. View Article : Google Scholar : PubMed/NCBI | |
Channappanavar R and Perlman S: Pathogenic human coronavirus infections: Causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. 39:529–539. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xiang-Hua Y, Le-Min W, Ai-Bin L, Zhu G, Riquan L, Xu-You Z, Wei-Wei R and Ye-Nan W: Severe acute respiratory syndrome and venous thromboembolism in multiple organs. Am J Respir Crit Care Med. 182:436–437. 2010. View Article : Google Scholar : PubMed/NCBI | |
Iba TA-O and Levy JH: Inflammation and thrombosis: Roles of neutrophils, platelets and endothelial cells and their interactions in thrombus formation during sepsis. J Thromb Haemost. 16:231–241. 2018. View Article : Google Scholar : PubMed/NCBI | |
Akira S, Uematsu S and Takeuchi O: Pathogen recognition and innate immunity. Cell. 124:783–801. 2006. View Article : Google Scholar : PubMed/NCBI | |
Connors JM and Levy JH: COVID-19 and its implications for thrombosis and anticoagulation. Blood. 135:2033–2040. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jackson S, Darbousset R and Schoenwaelder S: Thromboinflammation: Challenges of therapeutically targeting coagulation and other host defense mechanisms. Blood. 133:906–918. 2019. View Article : Google Scholar : PubMed/NCBI | |
Iba T, Levy JH, Wada H, Thachil J, Warkentin T and Levi M; Subcommittee on Disseminated Intravascular Coagulation, : Differential diagnoses for sepsis-induced disseminated intravascular coagulation: Communication from the SSC of the ISTH. J Thromb Haemost. 17:415–419. 2019. View Article : Google Scholar : PubMed/NCBI | |
Goshua G, Pine AB, Meizlish ML, Chang CH, Zhang H, Bahel P, Baluha A, Bar N, Bona RD, Burns AJ, et al: Endotheliopathy in COVID-19-associated coagulopathy: Evidence from a single-centre, cross-sectional study. Lancet Haematol. 7:e575–e582. 2020. View Article : Google Scholar : PubMed/NCBI | |
Del Turco S, Vianello A, Ragusa R, Caselli C and Basta G: COVID-19 and cardiovascular consequences: Is the endothelial dysfunction the hardest challenge? Thromb Res. 196:143–151. Aug 24–2020.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI |