1
|
Liu Y, Zeng X, Miao J, Liu C, Wei F, Liu
D, Zheng Z, Ting K, Wang C and Guo J: Upregulation of long
noncoding RNA MEG3 inhibits the osteogenic differentiation of
periodontal ligament cells. J Cell Physiol. 234:4617–4626. 2019.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Pihlstrom BL, Michalowicz BS and Johnson
NW: Periodontal diseases. Lancet. 366:1809–1820. 2005. View Article : Google Scholar : PubMed/NCBI
|
3
|
Xue P, Li B, An Y, Sun J, He X, Hou R,
Dong G, Fei D, Jin F, Wang Q and Jin Y: Decreased MORF leads to
prolonged endoplasmic reticulum stress in periodontitis-associated
chronic inflammation. Cell Death Differ. 23:1862–1872. 2016.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Zhang H and Zhang D: Effects of
periodontal ligament cells on alveolar bone metabolism under the
action of force and inflammatory factors and its molecular
mechanisms. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 39:432–437.
2017.PubMed/NCBI
|
5
|
Nagata M, Iwasaki K, Akazawa K, Komaki M,
Yokoyama N, Izumi Y and Morita I: Conditioned medium from
periodontal ligament stem cells enhances periodontal regeneration.
Tissue Eng Part A. 23:367–377. 2017. View Article : Google Scholar : PubMed/NCBI
|
6
|
Liu N, Shi S, Deng M, Tang L, Zhang G, Liu
N, Ding B, Liu W, Liu Y, Shi H, et al: High levels of β-catenin
signaling reduce osteogenic differentiation of stem cells in
inflammatory microenvironments through inhibition of the
noncanonical Wnt pathway. J Bone Miner Res. 26:2082–2095. 2011.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Zhang J, Li ZG, Si YM, Chen B and Meng J:
The difference on the osteogenic differentiation between
periodontal ligament stem cells and bone marrow mesenchymal stem
cells under inflammatory microenviroments. Differentiation.
88:97–105. 2014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Jia B, Qiu X, Chen J, Sun X, Zheng X, Zhao
J, Li Q and Wang Z: A feed-forward regulatory network
lncPCAT1/miR-106a-5p/E2F5 regulates the osteogenic differentiation
of periodontal ligament stem cells. J Cell Physiol.
234:19523–19538. 2019. View Article : Google Scholar : PubMed/NCBI
|
9
|
Wei F, Yang S, Guo Q, Zhang X, Ren D, Lv T
and Xu X: MicroRNA-21 regulates osteogenic differentiation of
periodontal ligament stem cells by targeting Smad5. Sci Rep.
7:166082017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Yan GQ, Wang X, Yang F, Yang ML, Zhang GR,
Wang GK and Zhou Q: MicroRNA-22 promoted osteogenic differentiation
of human periodontal ligament stem cells by targeting HDAC6. J Cell
Biochem. 118:1653–1658. 2017. View Article : Google Scholar : PubMed/NCBI
|
11
|
Gu X, Li M, Jin Y, Liu D and Wei F:
Identification and integrated analysis of differentially expressed
lncRNAs and circRNAs reveal the potential ceRNA networks during
PDLSC osteogenic differentiation. BMC Genet. 18:1002017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Ugawa Y, Yamamoto T, Kawamura M, Yamashiro
K, Shimoe M, Tomikawa K, Hongo S, Maeda H and Takashiba S:
Rho-kinase regulates extracellular matrix-mediated osteogenic
differentiation of periodontal ligament cells. Cell Biol Int.
41:651–658. 2017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Kang W, Liang Q, Du L, Shang L, Wang T and
Ge S: Sequential application of bFGF and BMP-2 facilitates
osteogenic differentiation of human periodontal ligament stem
cells. J Periodontal Res. 54:424–434. 2019. View Article : Google Scholar : PubMed/NCBI
|
14
|
Lee JS, Lee JC and Heo JS:
Polydopamine-assisted BMP-2 immobilization on titanium surface
enhances the osteogenic potential of periodontal ligament stem
cells via integrin-mediated cell-matrix adhesion. J Cell Commun
Signal. 12:661–672. 2018. View Article : Google Scholar : PubMed/NCBI
|
15
|
Cao F, Zhan J, Chen X, Zhang K, Lai R and
Feng Z: miR-214 promotes periodontal ligament stem cell
osteoblastic differentiation by modulating Wnt/β-catenin signaling.
Mol Med Rep. 16:9301–9308. 2017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Li S, Shao J, Zhou Y, Friis T, Yao J, Shi
B and Xiao Y: The impact of Wnt signalling and hypoxia on
osteogenic and cementogenic differentiation in human periodontal
ligament cells. Mol Med Rep. 14:4975–4982. 2016. View Article : Google Scholar : PubMed/NCBI
|
17
|
Chen LJ, Hu BB, Shi XL, Ren MM, Yu WB, Cen
SD, Hu RD and Deng H: Baicalein enhances the osteogenic
differentiation of human periodontal ligament cells by activating
the Wnt/β-catenin signaling pathway. Arch Oral Biol. 78:100–108.
2017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Wang L, Wu F, Song Y, Li X, Wu Q, Duan Y
and Jin Z: Long noncoding RNA related to periodontitis interacts
with miR-182 to upregulate osteogenic differentiation in
periodontal mesenchymal stem cells of periodontitis patients. Cell
Death Dis. 7:e23272016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhang J, Wang P, Wan L, Xu S and Pang D:
The emergence of noncoding RNAs as Heracles in autophagy.
Autophagy. 13:1004–1024. 2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Cech TR and Steitz JA: The noncoding RNA
revolution-trashing old rules to forge new ones. Cell. 157:77–94.
2014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Sharp PA: The centrality of RNA. Cell.
136:577–580. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Zhuang W, Ge X, Yang S, Huang M, Zhuang W,
Chen P, Zhang X, Fu J, Qu J and Li B: Upregulation of lncRNA MEG3
promotes osteogenic differentiation of mesenchymal stem cells from
multiple myeloma patients by targeting BMP4 transcription. Stem
Cells. 33:1985–1997. 2015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhang W, Dong R, Diao S, Du J, Fan Z and
Wang F: Differential long noncoding RNA/mRNA expression profiling
and functional network analysis during osteogenic differentiation
of human bone marrow mesenchymal stem cells. Stem Cell Res Ther.
8:302017. View Article : Google Scholar : PubMed/NCBI
|
24
|
Liao J, Yu X, Hu X, Fan J, Wang J, Zhang
Z, Zhao C, Zeng Z, Shu Y, Zhang R, et al: lncRNA H19 mediates
BMP9-induced osteogenic differentiation of mesenchymal stem cells
(MSCs) through Notch signaling. Oncotarget. 8:53581–53601. 2017.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Memczak S, Jens M, Elefsinioti A, Torti F,
Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer
M, et al: Circular RNAs are a large class of animal RNAs with
regulatory potency. Nature. 495:333–338. 2013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Hansen TB, Jensen TI, Clausen BH, Bramsen
JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function
as efficient microRNA sponges. Nature. 495:384–388. 2013.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Beermann J, Piccoli MT, Viereck J and Thum
T: Non-coding RNAs in development and disease: Background,
mechanisms, and therapeutic approaches. Physiol Rev. 96:1297–1325.
2016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Mozaffari SV, Stein MM, Magnaye KM,
Nicolae DL and Ober C: Parent of origin gene expression in a
founder population identifies two new candidate imprinted genes at
known imprinted regions. PLoS One. 13:e02039062018. View Article : Google Scholar : PubMed/NCBI
|
29
|
Lei M, Mitsuhashi S, Miyake N, Ohta T,
Liang D, Wu L and Matsumoto N: Translocation breakpoint disrupting
the host SNHG14 gene but not coding genes or snoRNAs in typical
Prader-Willi syndrome. J Hum Genet. 64:647–652. 2019. View Article : Google Scholar : PubMed/NCBI
|
30
|
Lin X, Jiang T, Bai J, Li J, Wang T, Xiao
J, Tian Y, Jin X, Shao T, Xu J, et al: Characterization of
transcriptome transition associates long noncoding RNAs with glioma
progression. Mol Ther Nucleic Acids. 13:620–632. 2018. View Article : Google Scholar : PubMed/NCBI
|
31
|
Du L, Yang P and Ge S: Isolation and
characterization of human gingiva-derived mesenchymal stem cells
using limiting dilution method. J Dent Sci. 11:304–314. 2016.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Wang T, Kang W, Du L and Ge S: Rho-kinase
inhibitor Y-27632 facilitates the proliferation, migration and
pluripotency of human periodontal ligament stem cells. J Cell Mol
Med. 21:3100–3112. 2017. View Article : Google Scholar : PubMed/NCBI
|
33
|
Li JH, Liu S, Zhou H, Qu LH and Yang JH:
starBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA
interaction networks from large-scale CLIP-Seq data. Nucleic Acids
Res. 42((Database Issue)): D92–D97. 2014. View Article : Google Scholar : PubMed/NCBI
|
34
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Bae WJ, Shin MR, Kang SK, Zhang-Jun, Kim
JY, Lee SC and Kim EC: HIF-2 inhibition supresses inflammatory
responses and osteoclastic differentiation in human periodontal
ligament cells. J Cell Biochem. 116:1241–1255. 2015. View Article : Google Scholar : PubMed/NCBI
|
36
|
Wu XS, Wang F, Li HF, Hu YP, Jiang L,
Zhang F, Li ML, Wang XA, Jin YP, Zhang YJ, et al: LncRNA-PAGBC acts
as a microRNA sponge and promotes gallbladder tumorigenesis. EMBO
Rep. 18:1837–1853. 2017. View Article : Google Scholar : PubMed/NCBI
|
37
|
Ballantyne MD, McDonald RA and Baker AH:
lncRNA/MicroRNA interactions in the vasculature. Clin Pharmacol
Ther. 99:494–501. 2016. View Article : Google Scholar : PubMed/NCBI
|
38
|
Wang K, Jin W, Song Y and Fei X: LncRNA
RP11-436H11.5, functioning as a competitive endogenous RNA,
upregulates BCL-W expression by sponging miR-335-5p and promotes
proliferation and invasion in renal cell carcinoma. Mol Cancer.
16:1662017. View Article : Google Scholar : PubMed/NCBI
|
39
|
Kallen AN, Zhou XB, Xu J, Qiao C, Ma J,
Yan L, Lu L, Liu C, Yi JS, Zhang H, et al: The imprinted H19 lncRNA
antagonizes let-7 microRNAs. Mol Cell. 52:101–112. 2013. View Article : Google Scholar : PubMed/NCBI
|
40
|
Yu C, Li L, Xie F, Guo S, Liu F, Dong N
and Wang Y: LncRNA TUG1 sponges miR-204-5p to promote osteoblast
differentiation through upregulating Runx2 in aortic valve
calcification. Cardiovasc Res. 114:168–179. 2018. View Article : Google Scholar : PubMed/NCBI
|
41
|
Kim J, Abdelmohsen K, Yang X, De S,
Grammatikakis I, Noh JH and Gorospe M: LncRNA OIP5-AS1/cyrano
sponges RNA-binding protein HuR. Nucleic Acids Res. 44:2378–2392.
2016. View Article : Google Scholar : PubMed/NCBI
|
42
|
Guo L, Zhao RC and Wu Y: The role of
microRNAs in self-renewal and differentiation of mesenchymal stem
cells. Exp Hematol. 39:608–616. 2011. View Article : Google Scholar : PubMed/NCBI
|
43
|
Zhang Z, Liu J, Zeng Z, Fan J, Huang S,
Zhang L, Zhang B, Wang X, Feng Y, Ye Z, et al: lncRNA Rmst acts as
an important mediator of BMP9-induced osteogenic differentiation of
mesenchymal stem cells (MSCs) by antagonizing Notch-targeting
microRNAs. Aging (Albany NY). 11:12476–12496. 2019. View Article : Google Scholar : PubMed/NCBI
|
44
|
Seenprachawong K, Nuchnoi P, Nantasenamat
C, Prachayasittikul V and Supokawej A: Computational identification
of miRNAs that modulate the differentiation of mesenchymal stem
cells to osteoblasts. PeerJ. 4:e19762016. View Article : Google Scholar : PubMed/NCBI
|
45
|
Vimalraj S and Selvamurugan N: MicroRNAs
expression and their regulatory networks during mesenchymal stem
cells differentiation toward osteoblasts. Int J Biol Macromol.
66:194–202. 2014. View Article : Google Scholar : PubMed/NCBI
|
46
|
Pan YJ, Wei LL, Wu XJ, Huo FC, Mou J and
Pei DS: MiR-106a-5p inhibits the cell migration and invasion of
renal cell carcinoma through targeting PAK5. Cell Death Dis.
8:e31552017. View Article : Google Scholar : PubMed/NCBI
|
47
|
Hai B, Ma Y, Pan X, Yong L, Liang C, He G,
Yang C, Zhu B and Liu X: Melatonin benefits to the growth of human
annulus fibrosus cells through inhibiting miR-106a-5p/ATG7
signaling pathway. Clin Interv Aging. 14:621–630. 2019. View Article : Google Scholar : PubMed/NCBI
|
48
|
Hao W, Liu H, Zhou L, Sun Y, Su H, Ni J,
He T, Shi P and Wang X: MiR-145 regulates osteogenic
differentiation of human adipose-derived mesenchymal stem cells
through targeting FoxO1. Exp Biol Med (Maywood). 243:386–393. 2018.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Zhu S, Peng W, Li X, Weng J, Zhang X, Guo
J, Huang D, Rong Q and Chen S: miR-1827 inhibits osteogenic
differentiation by targeting IGF1 in MSMSCs. Sci Rep. 7:461362017.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Wang H, Cui Y, Luan J, Zhou X, Li C, Li H,
Shi L and Han J: MiR-5100 promotes osteogenic differentiation by
targeting Tob2. J Bone Miner Metab. 35:608–615. 2017. View Article : Google Scholar : PubMed/NCBI
|
51
|
Zhou N, Li Q, Lin X, Hu N, Liao JY, Lin
LB, Zhao C, Hu ZM, Liang X, Xu W, et al: BMP2 induces chondrogenic
differentiation, osteogenic differentiation and endochondral
ossification in stem cells. Cell Tissue Res. 366:101–111. 2016.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Sun MH, Wang WJ, Li Q, Yuan T and Weng WJ:
Autologous oxygen release nano bionic scaffold composite miR-106a
induced BMSCs enhances osteoblast conversion and promotes bone
repair through regulating BMP-2. Eur Rev Med Pharmacol Sci.
22:7148–7155. 2018.PubMed/NCBI
|
53
|
Park SH, Kwon JS, Lee BS, Park JH, Lee BK,
Yun JH, Lee BY, Kim JH, Min BH, Yoo TH and Kim MS: BMP2-modified
injectable hydrogel for osteogenic differentiation of human
periodontal ligament stem cells. Sci Rep. 7:66032017. View Article : Google Scholar : PubMed/NCBI
|
54
|
Li H, Li T, Wang S, Wei J, Fan J, Li J,
Han Q, Liao L, Shao C and Zhao RC: miR-17-5p and miR-106a are
involved in the balance between osteogenic and adipogenic
differentiation of adipose-derived mesenchymal stem cells. Stem
Cell Res. 10:313–324. 2013. View Article : Google Scholar : PubMed/NCBI
|
55
|
Oliveira OR, Martins SP, Lima WG and Gomes
MM: The use of bone morphogenetic proteins (BMP) and
pseudarthrosis, a literature review. Rev Bras Ortop. 52:124–140.
2016. View Article : Google Scholar : PubMed/NCBI
|
56
|
Bais MV, Wigner N, Young M, Toholka R,
Graves DT, Morgan EF, Gerstenfeld LC and Einhorn TA: BMP2 is
essential for post natal osteogenesis but not for recruitment of
osteogenic stem cells. Bone. 45:254–266. 2009. View Article : Google Scholar : PubMed/NCBI
|