1
|
Popova S, Lange S, Probst C, Gmel G and
Rehm J: Estimation of national, regional, and global prevalence of
alcohol use during pregnancy and fetal alcohol syndrome: A
systematic review and meta-analysis. Lancet Global health.
5:e290–e299. 2017. View Article : Google Scholar : PubMed/NCBI
|
2
|
Popova S, Lange S, Probst C, Parunashvili
N and Rehm J: Prevalence of alcohol consumption during pregnancy
and Fetal Alcohol Spectrum Disorders among the general and
Aboriginal populations in Canada and the United States. Eur J Med
Genet. 60:32–48. 2017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Riley EP, Infante MA and Warren KR: Fetal
alcohol spectrum disorders: An overview. Neuropsychol Rev.
21:73–80. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Wilhoit LF, Scott DA and Simecka BA: Fetal
alcohol spectrum disorders: Characteristics, complications, and
treatment. Community Ment Health J. 53:711–718. 2017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Petrelli B, Weinberg J and Hicks GG:
Effects of prenatal alcohol exposure (PAE): Insights into FASD
using mouse models of PAE. Biochem Cell Biol. 96:131–147. 2018.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Davis-Anderson KL, Wesseling H, Siebert
LM, Lunde-Young ER, Naik VD, Steen H and Ramadoss J: Fetal regional
brain protein signature in FASD rat model. Reprod Toxicol.
76:84–92. 2018. View Article : Google Scholar : PubMed/NCBI
|
7
|
Creeley CE, Dikranian KT, Johnson SA,
Farber NB and Olney JW: Alcohol-induced apoptosis of
oligodendrocytes in the fetal macaque brain. Acta Neuropathol
Commun. 1:232013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Farber NB, Creeley CE and Olney JW:
Alcohol-induced neuroapoptosis in the fetal macaque brain.
Neurobiol Dis. 40:200–206. 2010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Gerlai R: Embryonic alcohol exposure:
Towards the development of a zebrafish model of fetal alcohol
spectrum disorders. Dev Psychobiol. 57:787–798. 2015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Flentke GR and Smith SM: The avian embryo
as a model for fetal alcohol spectrum disorder. Biochem Cell Biol.
96:98–106. 2018. View Article : Google Scholar : PubMed/NCBI
|
11
|
Popova S, Lange S, Probst C, Gmel G and
Rehm J: Global prevalence of alcohol use and binge drinking during
pregnancy, and fetal alcohol spectrum disorder. Biochem Cell Biol.
96:237–240. 2018. View Article : Google Scholar : PubMed/NCBI
|
12
|
Cheng HG, Deng F, Xiong W and Phillips MR:
Prevalence of alcohol use disorders in mainland China: A systematic
review. Addiction. 110:761–774. 2015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Wang YY and D'Amato RC: Understanding
fetal alcohol spectrum disorders in China. J Pediatr Neuropsychol.
3:53–60. 2017. View Article : Google Scholar
|
14
|
Clarren SK, Alvord EC Jr, Sumi SM,
Streissguth AP and Smith DW: Brain malformations related to
prenatal exposure to ethanol. J Pediatr. 92:64–67. 1978. View Article : Google Scholar : PubMed/NCBI
|
15
|
Miller MW: Migration of cortical neurons
is altered by gestational exposure to ethanol. Alcohol Clin Exp
Res. 17:304–314. 1993. View Article : Google Scholar : PubMed/NCBI
|
16
|
Lotfullina N and Khazipov R: Ethanol and
the developing brain: Inhibition of neuronal activity and
neuroapoptosis. Neuroscientist. 24:130–141. 2018. View Article : Google Scholar : PubMed/NCBI
|
17
|
Sowell ER, Mattson SN, Kan E, Thompson PM,
Riley EP and Toga AW: Abnormal cortical thickness and
brain-behavior correlation patterns in individuals with heavy
prenatal alcohol exposure. Cereb Cortex. 18:136–144. 2008.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhou D, Lebel C, Lepage C, Rasmussen C,
Evans A, Wyper K, Pei J, Andrew G, Massey A, Massey D and Beaulieu
C: Developmental cortical thinning in fetal alcohol spectrum
disorders. NeuroImage. 58:16–25. 2011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Kang W, Wong LC, Shi SH and Hébert JM: The
transition from radial glial to intermediate progenitor cell is
inhibited by FGF signaling during corticogenesis. J Neurosci.
29:14571–14580. 2009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Segklia A, Seuntjens E, Elkouris M,
Tsalavos S, Stappers E, Mitsiadis TA, Huylebroeck D, Remboutsika E
and Graf D: Bmp7 regulates the survival, proliferation, and
neurogenic properties of neural progenitor cells during
corticogenesis in the mouse. PLoS One. 7:e340882012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Choe Y, Huynh T and Pleasure SJ: Migration
of oligodendrocyte progenitor cells is controlled by transforming
growth factor β family proteins during corticogenesis. J Neurosci.
34:14973–14983. 2014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Tiberi L, Vanderhaeghen P and van den
Ameele J: Cortical neurogenesis and morphogens: Diversity of cues,
sources and functions. Curr Opin Cell Biol. 24:269–276. 2012.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Bengoa-Vergniory N and Kypta RM: Canonical
and noncanonical Wnt signaling in neural stem/progenitor cells.
Cell Mol Life Sci. 72:4157–4172. 2015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Inestrosa NC and Varela-Nallar L: Wnt
signalling in neuronal differentiation and development. Cell Tissue
Res. 359:215–223. 2015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Razavi MJ, Zhang T, Chen H, Li Y, Platt S,
Zhao Y, Guo L, Hu X, Wang X and Liu T: Radial structure scaffolds
convolution patterns of developing cerebral cortex. Front Comput
Neurosci. 11:762017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Yamamoto H, Mandai K, Konno D, Maruo T,
Matsuzaki F and Takai Y: Impairment of radial glial
scaffold-dependent neuronal migration and formation of double
cortex by genetic ablation of afadin. Brain Res. 1620:139–152.
2015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Falk S and Götz M: Glial control of
neurogenesis. Curr Opin Neurobiol. 47:188–195. 2017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Yuzwa SA and Miller FD: Deciphering
cell-cell communication in the developing mammalian brain.
Neurogenesis (Austin). 4:e12864252017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Miller MW and Robertson S: Prenatal
exposure to ethanol alters the postnatal development and
transformation of radial glia to astrocytes in the cortex. J Comp
Neurol. 337:253–266. 1993. View Article : Google Scholar : PubMed/NCBI
|
30
|
Rubert G, Miñana R, Pascual M and Guerri
C: Ethanol exposure during embryogenesis decreases the radial glial
progenitorpool and affects the generation of neurons and
astrocytes. J Neurosci Res. 84:483–496. 2006. View Article : Google Scholar : PubMed/NCBI
|
31
|
Vallés S, Pitarch J, Renau-Piqueras J and
Guerri C: Ethanol exposure affects glial fibrillary acidic protein
gene expression and transcription during rat brain development. J
Neurochem. 69:2484–2493. 1997. View Article : Google Scholar : PubMed/NCBI
|
32
|
Nash R, Krishnamoorthy M, Jenkins A and
Csete M: Human embryonic stem cell model of ethanol-mediated early
developmental toxicity. Exp Neurol. 234:127–135. 2012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Johansson PA, Cappello S and Götz M: Stem
cells niches during development-lessons from the cerebral cortex.
Curr Opin Neurobiol. 20:400–407. 2010. View Article : Google Scholar : PubMed/NCBI
|
34
|
Götz M, Hartfuss E and Malatesta P: Radial
glial cells as neuronal precursors: A new perspective on the
correlation of morphology and lineage restriction in the developing
cerebral cortex of mice. Brain Res Bull. 57:777–788. 2002.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Malatesta P, Appolloni I and Calzolari F:
Radial glia and neural stem cells. Cell Tissue Res. 331:165–178.
2008. View Article : Google Scholar : PubMed/NCBI
|
36
|
Jinnou H, Sawada M, Kawase K, Kaneko N,
Herranz-Pérez V, Miyamoto T, Kawaue T, Miyata T, Tabata Y, Akaike
T, et al: Radial glial fibers promote neuronal migration and
functional recovery after neonatal brain injury. Cell Stem Cell.
22:128–137.e9. 2018. View Article : Google Scholar : PubMed/NCBI
|
37
|
Nowakowski TJ, Pollen AA,
Sandoval-Espinosa C and Kriegstein AR: Transformation of the radial
glia scaffold demarcates two stages of human cerebral cortex
development. Neuron. 91:1219–1227. 2016. View Article : Google Scholar : PubMed/NCBI
|
38
|
Barry DS, Pakan JM and McDermott KW:
Radial glial cells: Key organisers in CNS development. Int J
Biochem Cell Biol. 46:76–79. 2014. View Article : Google Scholar : PubMed/NCBI
|
39
|
Garcia AD, Doan NB, Imura T, Bush TG and
Sofroniew MV: GFAP-expressing progenitors are the principal source
of constitutive neurogenesis in adult mouse forebrain. Nat
Neurosci. 7:1233–1241. 2004. View
Article : Google Scholar : PubMed/NCBI
|
40
|
Johnson K, Barragan J, Bashiruddin S,
Smith CJ, Tyrrell C, Parsons MJ, Doris R, Kucenas S, Downes GB,
Velez CM, et al: Gfap-positive radial glial cells are an essential
progenitor population for later-born neurons and glia in the
zebrafish spinal cord. Glia. 64:1170–1189. 2016. View Article : Google Scholar : PubMed/NCBI
|
41
|
Middeldorp J, Boer K, Sluijs JA, De
Filippis L, Encha-Razavi F, Vescovi AL, Swaab DF, Aronica E and Hol
EM: GFAPdelta in radial glia and subventricular zone progenitors in
the developing human cortex. Development. 137:313–321. 2010.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Gotoh H, Nomura T and Ono K: Glycogen
serves as an energy source that maintains astrocyte cell
proliferation in the neonatal telencephalon. J Cereb Blood Flow
Metab. 37:2294–2307. 2017. View Article : Google Scholar : PubMed/NCBI
|
43
|
National Research Council, . Guide for the
Care and Use of Laboratory Animals. 8th edition. The National
Academies Press; Washington, DC: 2011
|
44
|
Parnell SE, Chen SY, Charness ME, Hodge
CW, Dehart DB and Sulik KK: Concurrent dietary administration of
D-SAL and ethanol diminishes ethanol's teratogenesis. Alcohol Clin
Exp Res. 31:2059–2064. 2007. View Article : Google Scholar : PubMed/NCBI
|
45
|
Parnell SE, Dehart DB, Wills TA, Chen SY,
Hodge CW, Besheer J, Waage-Baudet HG, Charness ME and Sulik KK:
Maternal oral intake mouse model for fetal alcohol spectrum
disorders: Ocular defects as a measure of effect. Alcohol Clin Exp
Res. 30:1791–1798. 2006. View Article : Google Scholar : PubMed/NCBI
|
46
|
Dunn KW, Kamocka MM and McDonald JH: A
practical guide to evaluating colocalization in biological
microscopy. Am J Physiol Cell Physiol. 300:C723–C742. 2011.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Pekny M and Pekna M: Astrocyte
intermediate filaments in CNS pathologies and regeneration. J
Pathol. 204:428–437. 2004. View Article : Google Scholar : PubMed/NCBI
|
48
|
Raponi E, Agenes F, Delphin C, Assard N,
Baudier J, Legraverend C and Deloulme JC: S100B expression defines
a state in which GFAP-expressing cells lose their neural stem cell
potential and acquire a more mature developmental stage. Glia.
55:165–177. 2007. View Article : Google Scholar : PubMed/NCBI
|
49
|
Hutton SR and Pevny LH: SOX2 expression
levels distinguish between neural progenitor populations of the
developing dorsal telencephalon. Dev Biol. 352:40–47. 2011.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Kamachi Y and Kondoh H: Sox proteins:
Regulators of cell fate specification and differentiation.
Development. 140:4129–4144. 2013. View Article : Google Scholar : PubMed/NCBI
|
51
|
Bani-Yaghoub M, Tremblay RG, Lei JX, Zhang
D, Zurakowski B, Sandhu JK, Smith B, Ribecco-Lutkiewicz M, Kennedy
J, Walker PR and Sikorska M: Role of Sox2 in the development of the
mouse neocortex. Dev Biol. 295:52–66. 2006. View Article : Google Scholar : PubMed/NCBI
|
52
|
Ferri A, Favaro R, Beccari L, Bertolini J,
Mercurio S, Nieto-Lopez F, Verzeroli C, La Regina F, De Pietri
Tonelli D, Ottolenghi S, et al: Sox2 is required for embryonic
development of the ventral telencephalon through the activation of
the ventral determinants Nkx2.1 and Shh. Development.
140:1250–1261. 2013. View Article : Google Scholar : PubMed/NCBI
|
53
|
Hagey DW and Muhr J: Sox2 acts in a
dose-dependent fashion to regulate proliferation of cortical
progenitors. Cell Rep. 9:1908–1920. 2014. View Article : Google Scholar : PubMed/NCBI
|
54
|
Wang S, Chandler-Militello D, Lu G, Roy
NS, Zielke A, Auvergne R, Stanwood N, Geschwind D, Coppola G,
Nicolis SK, et al: Prospective identification, isolation, and
profiling of a telomerase-expressing subpopulation of human neural
stem cells, using sox2 enhancer-directed fluorescence-activated
cell sorting. J Neurosci. 30:14635–14648. 2010. View Article : Google Scholar : PubMed/NCBI
|
55
|
Mamber C, Kamphuis W, Haring NL, Peprah N,
Middeldorp J and Hol EM: GFAPδ expression in glia of the
developmental and adolescent mouse brain. PLoS One. 7:e526592012.
View Article : Google Scholar : PubMed/NCBI
|
56
|
Kamphuis W, Mamber C, Moeton M, Kooijman
L, Sluijs JA, Jansen AH, Verveer M, de Groot LR, Smith VD,
Rangarajan S, et al: GFAP isoforms in adult mouse brain with a
focus on neurogenic astrocytes and reactive astrogliosis in mouse
models of Alzheimer disease. PLoS One. 7:e428232012. View Article : Google Scholar : PubMed/NCBI
|
57
|
Yang Z and Wang KK: Glial fibrillary
acidic protein: From intermediate filament assembly and gliosis to
neurobiomarker. Trends Neurosci. 38:364–374. 2015. View Article : Google Scholar : PubMed/NCBI
|
58
|
Howard BM, Zhicheng M, Filipovic R, Moore
AR, Antic SD and Zecevic N: Radial glia cells in the developing
human brain. Neuroscientist. 14:459–473. 2008. View Article : Google Scholar : PubMed/NCBI
|
59
|
Sullivan SM: GFAP variants in health and
disease: Stars of the brain… and gut. J Neurochem. 130:729–732.
2014. View Article : Google Scholar : PubMed/NCBI
|
60
|
Zalfa C, Grasselli C, Santilli G, Ferrari
D, Lamorte G, Vescovi AL and De Filippis L: GFAP delta as divergent
marker of human glial progenitors. J Stem Cell Res Ther. 8:92018.
View Article : Google Scholar
|
61
|
Rezaie P, Ulfig N and Male D: Distribution
and morphology of GFAP-positive astrocytes in the human fetal brain
at second trimester. Neuroembryology. 2:50–63. 2003. View Article : Google Scholar
|
62
|
Sunabori T, Tokunaga A, Nagai T, Sawamoto
K, Okabe M, Miyawaki A, Matsuzaki Y, Miyata T and Okano H:
Cell-cycle-specific nestin expression coordinates with
morphological changes in embryonic cortical neural progenitors. J
Cell Sci. 121:1204–1212. 2008. View Article : Google Scholar : PubMed/NCBI
|
63
|
Wilhelmsson U, Lebkuechner I, Leke R,
Marasek P, Yang X, Antfolk D, Chen M, Mohseni P, Lasič E, Bobnar
ST, et al: Nestin regulates neurogenesis in mice through notch
signaling from astrocytes to neural stem cells. Cereb Cortex.
29:4050–4066. 2019. View Article : Google Scholar : PubMed/NCBI
|
64
|
Messam CA, Hou J and Major EO:
Coexpression of nestin in neural and glial cells in the developing
human CNS defined by a human-specific anti-nestin antibody. Exp
Neurol. 161:585–596. 2000. View Article : Google Scholar : PubMed/NCBI
|
65
|
Vukojevic K, Petrovic D and Saraga-Babic
M: Nestin expression in glial and neuronal progenitors of the
developing human spinal ganglia. Gene Expr Patterns. 10:144–151.
2010. View Article : Google Scholar : PubMed/NCBI
|
66
|
Eriksson JE, He T, Trejo-Skalli AV,
Härmälä-Braskén AS, Hellman J, Chou YH and Goldman RD: Specific in
vivo phosphorylation sites determine the assembly dynamics of
vimentin intermediate filaments. J Cell Sci. 117:919–932. 2004.
View Article : Google Scholar : PubMed/NCBI
|
67
|
Chen M, Puschmann TB, Marasek P, Inagaki
M, Pekna M, Wilhelmsson U and Pekny M: Increased neuronal
differentiation of neural progenitor cells derived from
phosphovimentin-deficient mice. Mol Neurobiol. 55:5478–5489. 2018.
View Article : Google Scholar : PubMed/NCBI
|
68
|
Chou YH, Khuon S, Herrmann H and Goldman
RD: Nestin promotes the phosphorylation-dependent disassembly of
vimentin intermediate filaments during mitosis. Mol Biol Cell.
14:1468–1478. 2003. View Article : Google Scholar : PubMed/NCBI
|
69
|
Widestrand A, Faijerson J, Wilhelmsson U,
Smith PL, Li L, Sihlbom C, Eriksson PS and Pekny M: Increased
neurogenesis and astrogenesis from neural progenitor cells grafted
in the hippocampus of GFAP−/− Vim−/− mice.
Stem Cells. 25:2619–2627. 2007. View Article : Google Scholar : PubMed/NCBI
|
70
|
Cunningham CL, Martinez-Cerdeno V and
Noctor SC: Diversity of neural precursor cell types in the prenatal
macaque cerebral cortex exists largely within the astroglial cell
lineage. PLoS One. 8:e638482013. View Article : Google Scholar : PubMed/NCBI
|
71
|
Li D, Takeda N, Jain R, Manderfield LJ,
Liu F, Li L, Anderson SA and Epstein JA: Hopx distinguishes
hippocampal from lateral ventricle neural stem cells. Stem Cell
Res. 15:522–529. 2015. View Article : Google Scholar : PubMed/NCBI
|
72
|
Braun SM and Jessberger S: Adult
neurogenesis: Mechanisms and functional significance. Development.
141:1983–1986. 2014. View Article : Google Scholar : PubMed/NCBI
|
73
|
Patro N, Naik A and Patro IK: Differential
temporal expression of S100β in developing rat brain. Front Cell
Neurosci. 9:872015. View Article : Google Scholar : PubMed/NCBI
|
74
|
Docampo-Seara A, Santos-Durán GN, Candal E
and Rodríguez Díaz MÁ: Expression of radial glial markers (GFAP,
BLBP and GS) during telencephalic development in the catshark
(Scyliorhinus canicula). Brain Struct Funct. 224:33–56. 2019.
View Article : Google Scholar : PubMed/NCBI
|
75
|
Aronne MP, Guadagnoli T, Fontanet P,
Evrard SG and Brusco A: Effects of prenatal ethanol exposure on rat
brain radial glia and neuroblast migration. Exp Neurol.
229:364–371. 2011. View Article : Google Scholar : PubMed/NCBI
|
76
|
Malik S, Vinukonda G, Vose LR, Diamond D,
Bhimavarapu BB, Hu F, Zia MT, Hevner R, Zecevic N and Ballabh P:
Neurogenesis continues in the third trimester of pregnancy and is
suppressed by premature birth. J Neurosci. 33:411–423. 2013.
View Article : Google Scholar : PubMed/NCBI
|
77
|
Zhang J and Jiao J: Molecular biomarkers
for embryonic and adult neural stem cell and neurogenesis. Biomed
Res Int. 2015:7275422015.PubMed/NCBI
|
78
|
van den Berge SA, van Strien ME, Korecka
JA, Dijkstra AA, Sluijs JA, Kooijman L, Eggers R, De Filippis L,
Vescovi AL, Verhaagen J, et al: The proliferative capacity of the
subventricular zone is maintained in the parkinsonian brain. Brain.
134:3249–3263. 2011. View Article : Google Scholar : PubMed/NCBI
|