1
|
Kubuschok B, Held G and Pfreundschuh M:
Management of diffuse large B-cell lymphoma (DLBCL). Cancer Treat
Res. 165:271–288. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Li S, Young KH and Medeiros LJ: Diffuse
large B-cell lymphoma. Pathology. 50:74–87. 2018. View Article : Google Scholar : PubMed/NCBI
|
3
|
Kong Y, Chen G, Xu Z, Yang G, Li B, Wu X,
Xiao W, Xie B, Hu L, Sun X, et al: Pterostilbene induces apoptosis
and cell cycle arrest in diffuse large B-cell lymphoma cells. Sci
Rep. 6:374172016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Hunt KE and Reichard KK: Diffuse large
B-cell lymphoma. Arch Pathol Lab Med. 132:118–124. 2008. View Article : Google Scholar : PubMed/NCBI
|
5
|
Sehn LH and Gascoyne RD: Diffuse large
B-cell lymphoma: Optimizing outcome in the context of clinical and
biologic heterogeneity. Blood. 125:22–32. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Mondello P and Mian M: Frontline treatment
of diffuse large B-cell lymphoma: Beyond R-CHOP. Hematol Oncol.
37:333–344. 2019. View
Article : Google Scholar : PubMed/NCBI
|
7
|
Pan YR, Chen CC, Chan YT, Wang HJ, Chien
FT, Chen YL, Liu JL and Yang MH: STAT3-coordinated migration
facilitates the dissemination of diffuse large B-cell lymphomas.
Nat Commun. 9:36962018. View Article : Google Scholar : PubMed/NCBI
|
8
|
Tamma R, Ingravallo G, Albano F, Gaudio F,
Annese T, Ruggieri S, Lorusso L, Errede M, Maiorano E, Specchia G
and Ribatti D: STAT-3 RNA scope determination in human diffuse
large B-cell lymphoma. Transl Oncol. 12:545–549. 2019. View Article : Google Scholar : PubMed/NCBI
|
9
|
Lu K, Li B, Zhang H, Xu Z, Song D, Gao L,
Sun H, Li L, Wang Y, Feng Q, et al: A novel silicone derivative of
natural osalmid (DCZ0858) induces apoptosis and cell cycle arrest
in diffuse large B-cell lymphoma via the JAK2/STAT3 pathway. Signal
Transduct Target Ther. 5:312020. View Article : Google Scholar : PubMed/NCBI
|
10
|
Ding BB, Yu JJ, Yu RY, Mendez LM,
Shaknovich R, Zhang Y, Cattoretti G and Ye BH: Constitutively
activated STAT3 promotes cell proliferation and survival in the
activated B-cell subtype of diffuse large B-cell lymphomas. Blood.
111:1515–1523. 2008. View Article : Google Scholar : PubMed/NCBI
|
11
|
Moskowitz AJ and Horwitz SM: Targeting
histone deacetylases in T-cell lymphoma. Leuk Lymphoma.
58:1306–1319. 2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Bai X, Jiang H, Han G and He Q: Chidamide
suppresses the glycolysis of triple negative breast cancer cells
partially by targeting the miR33a5pLDHA axis. Mol Med Rep.
20:1857–1865. 2019.PubMed/NCBI
|
13
|
Sun Y, Li J, Xu Z, Xu J, Shi M and Liu P:
Chidamide, a novel histone deacetylase inhibitor, inhibits multiple
myeloma cells proliferation through succinate dehydrogenase subunit
A. Am J Cancer Res. 9:574–584. 2019.PubMed/NCBI
|
14
|
Wu YF, Ou CC, Chien PJ, Chang HY, Ko JL
and Wang BY: Chidamide-induced ROS accumulation and
miR-129-3p-dependent cell cycle arrest in non-small lung cancer
cells. Phytomedicine. 56:94–102. 2019. View Article : Google Scholar : PubMed/NCBI
|
15
|
Ubink I, Bolhaqueiro ACF, Elias SG, Raats
DAE, Constantinides A, Peters NA, Wassenaar ECE, de Hingh IHJT,
Rovers KP, van Grevenstein WMU, et al: Organoids from colorectal
peritoneal metastases as a platform for improving hyperthermic
intraperitoneal chemotherapy. Br J Surg. 106:1404–1414. 2019.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Best S, Hashiguchi T, Kittai A, Bruss N,
Paiva C, Okada C, Liu T, Berger A and Danilov AV: Targeting
ubiquitin-activating enzyme induces ER stress-mediated apoptosis in
B-cell lymphoma cells. Blood Adv. 3:51–62. 2019. View Article : Google Scholar : PubMed/NCBI
|
18
|
Jin CY, Moon DO, Choi YH, Lee JD and Kim
GY: Bcl-2 and caspase-3 are major regulators in Agaricus
blazei-induced human leukemic U937 cell apoptosis through
dephoshorylation of Akt. Biol Pharm Bull. 30:1432–1437. 2007.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Ning ZQ, Li ZB, Newman MJ, Shan S, Wang
XH, Pan DS, Zhang J, Dong M, Du X and Lu XP: Chidamide
(CS055/HBI-8000): A new histone deacetylase inhibitor of the
benzamide class with antitumor activity and the ability to enhance
immune cell-mediated tumor cell cytotoxicity. Cancer Chemother
Pharmacol. 69:901–909. 2012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Li Y and Seto E: HDACs and HDAC inhibitors
in cancer development and therapy. Cold Spring Harb Perspect Med.
6:a0268312016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Williams SA, Chen LF, Kwon H, Ruiz-Jarabo
CM, Verdin E and Greene WC: NF-kappaB p50 promotes HIV latency
through HDAC recruitment and repression of transcriptional
initiation. EMBO J. 25:139–149. 2006. View Article : Google Scholar : PubMed/NCBI
|
22
|
Lee SH, Yoo C, Im S, Jung JH, Choi HJ and
Yoo J: Expression of histone deacetylases in diffuse large B-cell
lymphoma and its clinical significance. Int J Med Sci. 11:994–1000.
2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Gloghini A, Buglio D, Khaskhely NM,
Georgakis G, Orlowski RZ, Neelapu SS, Carbone A and Younes A:
Expression of histone deacetylases in lymphoma: Implication for the
development of selective inhibitors. Br J Haematol. 147:515–525.
2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Wang M, Fang X and Wang X: Emerging role
of histone deacetylase inhibitors in the treatment of diffuse large
B-cell lymphoma. Leuk Lymphoma. 61:763–775. 2020. View Article : Google Scholar : PubMed/NCBI
|
25
|
Gao S, Li X, Zang J, Xu W and Zhang Y:
Preclinical and clinical studies of chidamide (CS055/HBI-8000), an
orally available subtype-selective HDAC inhibitor for cancer
therapy. Anticancer Agents Med Chem. 17:802–812. 2017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Chan TS, Tse E and Kwong YL: Chidamide in
the treatment of peripheral T-cell lymphoma. Onco Targets Therapy.
10:347–352. 2017. View Article : Google Scholar
|
27
|
Li Q, Huang J, Ou Y, Li Y and Wu Y:
Progressive diffuse large B-cell lymphoma with TP53 gene mutation
treated with chidamide-based chemotherapy. Immunotherapy.
11:265–272. 2019. View Article : Google Scholar : PubMed/NCBI
|
28
|
Miao Y, Medeiros LJ, Li Y, Li J and Young
KH: Genetic alterations and their clinical implications in DLBCL.
Nat Rev Clin Oncol. 16:634–652. 2019. View Article : Google Scholar : PubMed/NCBI
|
29
|
Ngo VN, Young RM, Schmitz R, Jhavar S,
Xiao W, Lim KH, Kohlhammer H, Xu W, Yang Y, Zhao H, et al:
Oncogenically active MYD88 mutations in human lymphoma. Nature.
470:115–119. 2011. View Article : Google Scholar : PubMed/NCBI
|
30
|
Compagno M, Lim WK, Grunn A, Nandula SV,
Brahmachary M, Shen Q, Bertoni F, Ponzoni M, Scandurra M, Califano
A, et al: Mutations of multiple genes cause deregulation of
NF-kappaB in diffuse large B-cell lymphoma. Nature. 459:717–721.
2009. View Article : Google Scholar : PubMed/NCBI
|
31
|
Guan XW, Wang HQ, Ban WW, Chang Z, Chen
HZ, Jia L and Liu FT: Novel HDAC inhibitor Chidamide synergizes
with Rituximab to inhibit diffuse large B-cell lymphoma tumour
growth by upregulating CD20. Cell Death Dis. 11:202020. View Article : Google Scholar : PubMed/NCBI
|
32
|
Teng Y, Ross JL and Cowell JK: The
involvement of JAK-STAT3 in cell motility, invasion, and
metastasis. JAKSTAT. 3:e280862014.PubMed/NCBI
|
33
|
Sgrignani J, Garofalo M, Matkovic M,
Merulla J, Catapano CV and Cavalli A: Structural biology of STAT3
and its implications for anticancer therapies development. Int J
Mol Sci. 19:15912018. View Article : Google Scholar
|
34
|
Gharibi T, Babaloo Z, Hosseini A,
Abdollahpour-Alitappeh M, Hashemi V, Marofi F, Nejati K and
Baradaran B: Targeting STAT3 in cancer and autoimmune diseases. Eur
J Pharmacol. 878:1731072020. View Article : Google Scholar : PubMed/NCBI
|
35
|
Mohassab AM, Hassan HA, Abdelhamid D and
Abdel-Aziz M: STAT3 transcription factor as target for anti-cancer
therapy. Pharmacol Rep. 72:1101–1124. 2020. View Article : Google Scholar : PubMed/NCBI
|
36
|
Ni L, Wang L, Yao C, Ni Z, Liu F, Gong C,
Zhu X, Yan X, Watowich SS, Lee DA and Zhu S: The histone
deacetylase inhibitor valproic acid inhibits NKG2D expression in
natural killer cells through suppression of STAT3 and HDAC3. Sci
Rep. 7:452662017. View Article : Google Scholar : PubMed/NCBI
|
37
|
Hoesel B and Schmid JA: The complexity of
NF-κB signaling in inflammation and cancer. Mol Cancer. 12:862013.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Lu L, Zhu F, Li Y, Kimpara S, Hoang NM,
Pourdashti S and Rui L: Inhibition of the STAT3 target SGK1
sensitizes diffuse large B cell lymphoma cells to AKT inhibitors.
Blood Cancer J. 9:432019. View Article : Google Scholar : PubMed/NCBI
|
39
|
Belo Y, Mielko Z, Nudelman H, Afek A,
Ben-David O, Shahar A, Zarivach R, Gordan R and Arbely E:
Unexpected implications of STAT3 acetylation revealed by genetic
encoding of acetyl-lysine. Biochim Biophys Acta Gen Subj.
1863:1343–1350. 2019. View Article : Google Scholar : PubMed/NCBI
|
40
|
Zhang R, Lyu C, Lu W, Pu Y, Jiang Y and
Deng Q: Synergistic effect of programmed death-1 inhibitor and
programmed death-1 ligand-1 inhibitor combined with
chemotherapeutic drugs on DLBCL cell lines in vitro and in vivo. Am
J Cancer Res. 10:2800–2812. 2020.PubMed/NCBI
|