Application of nanotechnology in drug delivery systems for respiratory diseases (Review)
- Authors:
- Ming-Xin Luo
- Shan Hua
- Qi-Yun Shang
-
Affiliations: Department of Respiratory Medicine, Anhui Provincial Children's Hospital, Hefei, Anhui 230000, P.R. China - Published online on: March 5, 2021 https://doi.org/10.3892/mmr.2021.11964
- Article Number: 325
-
Copyright: © Luo et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
D'Amato G and Cecchi L: Effects of climate change on environmental factors in respiratory allergic diseases. Clin Exp Allergy. 38:1264–1274. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ferkol T and Schraufnagel D: The global burden of respiratory disease. Ann Am Thorac Soc. 11:404–406. 2014. View Article : Google Scholar : PubMed/NCBI | |
Newman SP: Delivering drugs to the lungs: The history of repurposing in the treatment of respiratory diseases. Adv Drug Deliv Rev. 133:5–18. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chang LH and Rivera MP: Respiratory diseases: Meeting the challenges of screening, prevention, and treatment. N C Med J. 74:385–392. 2013.PubMed/NCBI | |
Jeong J, Lee S, Kim SH, Han Y, Lee DK, Yang JY, Jeong J, Roh C, Huh YS and Cho WS: Evaluation of the dose metric for acute lung inflammogenicity of fast-dissolving metal oxide nanoparticles. Nanotoxicology. 10:1448–1457. 2016. View Article : Google Scholar : PubMed/NCBI | |
Pison U, Welte T, Giersig M and Groneberg DA: Nanomedicine for respiratory diseases. Eur J Pharmacol. 533:341–350. 2006. View Article : Google Scholar : PubMed/NCBI | |
Fröhlich E and Salar-Behzadi S: Toxicological assessment of inhaled nanoparticles: Role of in vivo, ex vivo, in vitro, and in silico studies. Int J Mol Sci. 15:4795–4822. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sung JC, Pulliam BL and Edwards DA: Nanoparticles for drug delivery to the lungs. Trends Biotechnol. 25:563–570. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bakand S, Hayes A and Dechsakulthorn F: Nanoparticles: A review of particle toxicology following inhalation exposure. Inhal Toxicol. 24:125–135. 2012. View Article : Google Scholar : PubMed/NCBI | |
Donaldson K, Tran L, Jimenez LA, Duffin R, Newby DE, Mills N, MacNee W and Stone V: Combustion-derived nanoparticles: A review of their toxicology following inhalation exposure. Part Fibre Toxicol. 2:102005. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Li S, Luo Z, Ren H, Zhang X, Huang F, Zuo YY and Yue T: Role of lipid coating in the transport of nanodroplets across the pulmonary surfactant layer revealed by molecular dynamics simulations. Langmuir. 34:9054–9063. 2018. View Article : Google Scholar : PubMed/NCBI | |
Auria-Soro C, Nesma T, Juanes-Velasco P, Landeira-Viñuela A, Fidalgo-Gomez H, Acebes-Fernandez V, Gongora R, Parra MJA, Manzano-Roman R and Fuentes M: Interactions of nanoparticles and biosystems: Microenvironment of nanoparticles and biomolecules in nanomedicine. Nanomaterials (Basel). 9:13652019. View Article : Google Scholar | |
Senapati S, Mahanta AK, Kumar S and Maiti P: Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther. 3:72018. View Article : Google Scholar : PubMed/NCBI | |
Poh TY, Mohamed Ali NAB, Aogáin MM, Kathawala MH, Setyawati MI, Ng KW and Chotirmall SH: Inhaled nanomaterials and the respiratory microbiome: Clinical, immunological and toxicological perspectives. Part Fibre Toxicol. 15:462018. View Article : Google Scholar : PubMed/NCBI | |
Oberdorster G, Elder A and Rinderknecht A: Nanoparticles and the brain: Cause for concern? J Nanosci Nanotechnol. 9:4996–5007. 2009. View Article : Google Scholar : PubMed/NCBI | |
Murgia X, Pawelzyk P, Schaefer UF, Wagner C, Willenbacher N and Lehr CM: Size-Limited penetration of nanoparticles into porcine respiratory mucus after aerosol deposition. Biomacromolecules. 17:1536–1542. 2016. View Article : Google Scholar : PubMed/NCBI | |
Blank F, Stumbles PA, Seydoux E, Holt PG, Fink A, Rothen-Rutishauser B, Strickland DH and von Garnier C: Size-Dependent uptake of particles by pulmonary antigen-presenting cell populations and trafficking to regional lymph nodes. Am J Respir Cell Mol Biol. 49:67–77. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ghaffar KA, Marasini N, Giddam AK, Batzloff MR, Good MF, Skwarczynski M and Toth I: The role of size in development of mucosal liposome-lipopeptide vaccine candidates against group a streptococcus. Med Chem. 13:22–27. 2016. View Article : Google Scholar : PubMed/NCBI | |
Murugan K, Choonara YE, Kumar P, Bijukumar D, du Toit LC and Pillay V: Parameters and characteristics governing cellular internalization and trans-barrier trafficking of nanostructures. Int J Nanomedicine. 10:2191–2206. 2015.PubMed/NCBI | |
Zhang L, Wang Y, Yang D, Huang W, Hao P, Feng S, Appelhans D, Zhang T and Zan X: Shape effect of nanoparticles on tumor penetration in monolayers versus spheroids. Mol Pharm. 16:2902–2911. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gratton SE, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME and DeSimone JM: The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci USA. 105:11613–11618. 2008. View Article : Google Scholar : PubMed/NCBI | |
Black KC, Wang Y, Luehmann HP, Cai X, Xing W, Pang B, Zhao Y, Cutler CS, Wang LV, Liu Y and Xia Y: Radioactive 198Au-doped nanostructures with different shapes for in vivo analyses of their biodistribution, tumor uptake, and intratumoral distribution. ACS Nano. 8:4385–4394. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hu G, Jiao B, Shi X, Valle RP, Fan Q and Zuo YY: Physicochemical properties of nanoparticles regulate translocation across pulmonary surfactant monolayer and formation of lipoprotein corona. ACS Nano. 7:10525–10533. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lin X, Zuo YY and Gu N: Shape affects the interactions of nanoparticles with pulmonary surfactant. Sci China Mater. 58:28–37. 2015. View Article : Google Scholar : PubMed/NCBI | |
Beck-Broichsitter M, Ruppert C, Schmehl T, Günther A and Seeger W: Biophysical inhibition of synthetic vs. Naturally-Derived pulmonary surfactant preparations by polymeric nanoparticles. Biochim Biophys Acta. 1838:474–481. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li J: Development of a QTsome lipid nanoparticle delivery platform for oligonucleotide therapeutics. The Ohio State University. 2018. | |
Mousseau F and Berret JF: The role of surface charge in the interaction of nanoparticles with model pulmonary surfactants. Soft Matter. 14:5764–5774. 2018. View Article : Google Scholar : PubMed/NCBI | |
Fromen CA, Rahhal TB, Robbins GR, Kai MP, Shen TW, Luft JC and DeSimone JM: Nanoparticle surface charge impacts distribution, uptake and lymph node trafficking by pulmonary antigen-presenting cells. Nanomedicine. 12:677–687. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tada R, Hidaka A, Kiyono H, Kunisawa J and Aramaki Y: Intranasal administration of cationic liposomes enhanced granulocyte-macrophage colony-stimulating factor expression and this expression is dispensable for mucosal adjuvant activity. BMC Res Notes. 11:4722018. View Article : Google Scholar : PubMed/NCBI | |
Fromen CA, Robbins GR, Shen TW, Kai MP, Ting JP and DeSimone JM: Controlled analysis of nanoparticle charge on mucosal and systemic antibody responses following pulmonary immunization. Proc Natl Acad Sci U S A. 112:488–493. 2015. View Article : Google Scholar : PubMed/NCBI | |
Howard KA, Rahbek UL, Liu X, Damgaard CK, Glud SZ, Andersen MØ, Hovgaard MB, Schmitz A, Nyengaard JR, Besenbacher F and Kjems J: RNA interference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system. Mol Ther. 14:476–484. 2006. View Article : Google Scholar : PubMed/NCBI | |
Fadeel B: Clear and present danger? Engineered nanoparticles and the immune system. Swiss Med Wkly. 142:w136092012.PubMed/NCBI | |
Li B, Xie J, Yuan Z, Jain P, Lin X, Wu K and Jiang S: Mitigation of inflammatory immune responses with hydrophilic nanoparticles. Angew Chem Int Ed Engl. 57:4527–4531. 2018. View Article : Google Scholar : PubMed/NCBI | |
Guzmán E, Ferrari M, Santini E, Liggieri L and Ravera F: Effect of silica nanoparticles on the interfacial properties of a canonical lipid mixture. Colloids Surf B Biointerfaces. 136:971–980. 2015. View Article : Google Scholar : PubMed/NCBI | |
Borm PJ and Kreyling W: Toxicological hazards of inhaled nanoparticles-potential implications for drug delivery. J Nanosci Nanotechnol. 4:521–531. 2004. View Article : Google Scholar : PubMed/NCBI | |
Oberdörster G, Oberdörster E and Oberdörster J: Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 113:823–839. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ngan CL and Asmawi AA: Lipid-Based pulmonary delivery system: A review and future considerations of formulation strategies and limitations. Drug Deliv Transl Res. 8:1527–1544. 2018. View Article : Google Scholar : PubMed/NCBI | |
Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, et al: Nano based drug delivery systems: Recent developments and future prospects. J Nanobiotechnology. 16:712018. View Article : Google Scholar : PubMed/NCBI | |
Bulbake U, Doppalapudi S, Kommineni N and Khan W: Liposomal formulations in clinical use: An updated review. Pharmaceutics. 9:122017. View Article : Google Scholar | |
Rudokas M, Najlah M, Alhnan MA and Elhissi A: Liposome delivery systems for inhalation: A critical review highlighting formulation issues and anticancer applications. Med Princ Pract. 25:60–72. 2016. View Article : Google Scholar : PubMed/NCBI | |
Riaz MK, Riaz MA, Zhang X, Lin C, Wong KH, Chen X, Zhang G, Lu A and Yang Z: Surface functionalization and targeting strategies of liposomes in solid tumor therapy: A Review. Int J Mol Sci. 19:1952018. View Article : Google Scholar | |
Garbuzenko OB, Mainelis G, Taratula O and Minko T: Inhalation treatment of lung cancer: The influence of composition, size and shape of nanocarriers on their lung accumulation and retention. Cancer Biol Med. 11:44–55. 2014.PubMed/NCBI | |
Barenholz Y: Doxil®-the first FDA-approved nano-drug: lessons learned. J Control Release. 160:117–134. 2012. View Article : Google Scholar : PubMed/NCBI | |
Rust DM and Jameson G: The novel lipid delivery system of amphotericin B: Drug profile and relevance to clinical practice. Oncol Nurs Forum. 25:35–48. 1998.PubMed/NCBI | |
Garbuzenko OB, Saad M, Betigeri S, Zhang M, Vetcher AA, Soldatenkov VA, Reimer DC, Pozharov VP and Minko T: Intratracheal versus intravenous liposomal delivery of siRNA, antisense oligonucleotides and anticancer drug. Pharm Res. 26:382–394. 2009. View Article : Google Scholar : PubMed/NCBI | |
Koshkina NV, Waldrep JC, Roberts LE, Golunski E, Melton S and Knight V: Paclitaxel liposome aerosol treatment induces inhibition of pulmonary metastases in murine renal carcinoma model. Clin Cancer Res. 7:3258–3262. 2001.PubMed/NCBI | |
Fritz JM, Tennis MA, Orlicky DJ, Lin H, Ju C, Redente EF, Choo KS, Staab TA, Bouchard RJ, Merrick DT, et al: Depletion of tumor-associated macrophages slows the growth of chemically induced mouse lung adenocarcinomas. Front Immunol. 5:5872014. View Article : Google Scholar : PubMed/NCBI | |
Wittgen BP, Kunst PW, van der Born K, van Wijk AW, Perkins W, Pilkiewicz FG, Perez-Soler R, Nicholson S, Peters GJ and Postmus PE: Phase I study of aerosolized SLIT cisplatin in the treatment of patients with carcinoma of the lung. Clin Cancer Res. 13:2414–2421. 2007. View Article : Google Scholar : PubMed/NCBI | |
Olivier KN, Griffith DE, Eagle G, McGinnis JP II, Micioni L, Liu K, Daley CL, Winthrop KL, Ruoss S, Addrizzo-Harris DJ, et al: Randomized trial of liposomal amikacin for inhalation in nontuberculous mycobacterial lung disease. Am J Respir Crit Care Med. 195:814–823. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Leifer F, Rose S, Chun DY, Thaisz J, Herr T, Nashed M, Joseph J, Perkins WR and DiPetrillo K: Amikacin liposome inhalation suspension (ALIS) penetrates non-tuberculous mycobacterial biofilms and enhances amikacin uptake into macrophages. Front Microbiol. 9:9152018. View Article : Google Scholar : PubMed/NCBI | |
Okusanya OO, Bhavnani SM, Hammel J, Minic P, Dupont LJ, Forrest A, Mulder GJ, Mackinson C, Ambrose PG and Gupta R: Pharmacokinetic and pharmacodynamic evaluation of liposomal amikacin for inhalation in cystic fibrosis patients with chronic pseudomonal infection. Antimicrob Agents Chemother. 53:3847–3854. 2009. View Article : Google Scholar : PubMed/NCBI | |
Konduri KS, Nandedkar S, Rickaby DA, Düzgüneş N and Gangadharam PR: The use of sterically stabilized liposomes to treat asthma. Methods Enzymol. 391:413–427. 2005. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Huang W, Wong BC, Yin L, Wong YF, Xu M and Yang Z: Liposomes prolong the therapeutic effect of anti-asthmatic medication via pulmonary delivery. Int J Nanomedicine. 7:1139–1148. 2012.PubMed/NCBI | |
Ng ZY, Wong JY, Panneerselvam J, Madheswaran T, Kumar P, Pillay V, Hsu A, Hansbro N, Bebawy M, Wark P, et al: Assessing the potential of liposomes loaded with curcumin as a therapeutic intervention in asthma. Colloids Surf B Biointerfaces. 172:51–59. 2018. View Article : Google Scholar : PubMed/NCBI | |
Komalla V, Allam VS, Kwok CL, Sheikholeslami B, Owen L, Jaffe A, Waters SA, Mohammad S, Oliver BG, Chen H and Haghi M: A phospholipid-based formulation for the treatment of airway inflammation in chronic respiratory diseases. Eur J Pharm Biopharm. 157:47–58. 2020. View Article : Google Scholar : PubMed/NCBI | |
Nahar K, Absar S, Patel B and Ahsan F: Starch-coated magnetic liposomes as an inhalable carrier for accumulation of fasudil in the pulmonary vasculature. Int J Pharm. 464:185–195. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wijagkanalan W, Kawakami S, Takenaga M, Igarashi R, Yamashita F and Hashida M: Efficient targeting to alveolar macrophages by intratracheal administration of mannosylated liposomes in rats. J Control Release. 125:121–130. 2008. View Article : Google Scholar : PubMed/NCBI | |
Cryan SA, Devocelle M, Moran PJ, Hickey AJ and Kelly JG: Increased intracellular targeting to airway cells using octaarginine-coated liposomes: In vitro assessment of their suitability for inhalation. Mol Pharm. 3:104–112. 2006. View Article : Google Scholar : PubMed/NCBI | |
Uner M and Yener G: Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int J Nanomedicine. 2:289–300. 2007.PubMed/NCBI | |
Bi R, Shao W, Wang Q and Zhang N: Solid lipid nanoparticles as insulin inhalation carriers for enhanced pulmonary delivery. J Biomed Nanotechnol. 5:84–92. 2009. View Article : Google Scholar : PubMed/NCBI | |
Nassimi M, Schleh C, Lauenstein HD, Hussein R, Lübbers K, Pohlmann G, Switalla S, Sewald K, Müller M, Krug N, et al: Low cytotoxicity of solid lipid nanoparticles in in vitro and ex vivo lung models. Inhal Toxicol. 21:104–109. 2009. View Article : Google Scholar : PubMed/NCBI | |
Videira M, Almeida AJ and Fabra A: Preclinical evaluation of a pulmonary delivered paclitaxel-loaded lipid nanocarrier antitumor effect. Nanomedicine. 8:1208–1215. 2012. View Article : Google Scholar : PubMed/NCBI | |
Castellani S, Trapani A, Spagnoletta A, di Toma L, Magrone T, Di Gioia S, Mandracchia D, Trapani G, Jirillo E and Conese M: Nanoparticle delivery of grape seed-derived proanthocyanidins to airway epithelial cells dampens oxidative stress and inflammation. J Transl Med. 16:1402018. View Article : Google Scholar : PubMed/NCBI | |
Bayón-Cordero L, Alkorta I and Arana L: Application of solid lipid nanoparticles to improve the efficiency of anticancer drugs. Nanomaterials (Basel). 9:4742019. View Article : Google Scholar | |
Maretti E, Costantino L, Buttini F, Rustichelli C, Leo E, Truzzi E and Iannuccelli V: Newly synthesized surfactants for surface mannosylation of respirable SLN assemblies to target macrophages in tuberculosis therapy. Drug Deliv Transl Res. 9:298–310. 2019. View Article : Google Scholar : PubMed/NCBI | |
Nimje N, Agarwal A, Saraogi GK, Lariya N, Rai G, Agrawal H and Agrawal GP: Mannosylated nanoparticulate carriers of rifabutin for alveolar targeting. J Drug Target. 17:777–787. 2009. View Article : Google Scholar : PubMed/NCBI | |
Rytting E, Nguyen J, Wang X and Kissel T: Biodegradable polymeric nanocarriers for pulmonary drug delivery. Expert Opin Drug Deliv. 5:629–639. 2008. View Article : Google Scholar : PubMed/NCBI | |
Marasini N, Haque S and Kaminskas LM: Polymer-Drug conjugates as inhalable drug delivery systems: A review. Curr Opin Colloid Interface Sci. 31:2017. View Article : Google Scholar : PubMed/NCBI | |
Yang M, Yamamoto H, Kurashima H, Takeuchi H, Yokoyama T, Tsujimoto H and Kawashima Y: Design and evaluation of poly(DL-lactic-co-glycolic acid) nanocomposite particles containing salmon calcitonin for inhalation. Eur J Pharm Sci. 46:374–380. 2012. View Article : Google Scholar : PubMed/NCBI | |
Türeli NG, Torge A, Juntke J, Schwarz BC, Schneider-Daum N, Türeli AE, Lehr CM and Schneider M: Ciprofloxacin-Loaded PLGA nanoparticles against cystic fibrosis P. Aeruginosa lung infections. Eur J Pharm Biopharm. 117:363–371. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kim I, Byeon HJ, Kim TH, Lee ES, Oh KT, Shin BS, Lee KC and Youn YS: Doxorubicin-Loaded highly porous large PLGA microparticles as a sustained- release inhalation system for the treatment of metastatic lung cancer. Biomaterials. 33:5574–5583. 2012. View Article : Google Scholar : PubMed/NCBI | |
Pandey R, Sharma A, Zahoor A, Sharma S, Khuller GK and Prasad B: Poly (DL-lactide-co-glycolide) nanoparticle-based inhalable sustained drug delivery system for experimental tuberculosis. J Antimicrob Chemother. 52:981–986. 2003. View Article : Google Scholar : PubMed/NCBI | |
Tomoda K, Ohkoshi T, Hirota K, Sonavane GS, Nakajima T, Terada H, Komuro M, Kitazato K and Makino K: Preparation and properties of inhalable nanocomposite particles for treatment of lung cancer. Colloids Surf B Biointerfaces. 71:177–182. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zou W, Liu C, Chen Z and Zhang N: Studies on bioadhesive PLGA nanoparticles: A promising gene delivery system for efficient gene therapy to lung cancer. Int J Pharm. 370:187–195. 2009. View Article : Google Scholar : PubMed/NCBI | |
Dailey LA and Kissel T: New poly(lactic-co-glycolic acid) derivatives: Modular polymers with tailored properties. Drug Discov Today Technol. 2:7–13. 2005. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Kim CS, Saylor DM and Koo D: Polymer degradation and drug delivery in PLGA-based drug-polymer applications: A review of experiments and theories. J Biomed Mater Res B Appl Biomater. 105:1692–1716. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fu J, Fiegel J, Krauland E and Hanes J: New polymeric carriers for controlled drug delivery following inhalation or injection. Biomaterials. 23:4425–4433. 2002. View Article : Google Scholar : PubMed/NCBI | |
Fatemeh DRA, Shahmabadi HE, Abedi A, Alavi SE, Movahedi F, Esfahani MKM, Mehrizi TZ and Akbarzadeh A: Polybutylcyanoacrylate nanoparticles and drugs of the platinum family: Last status. Indian J Clin Biochem. 29:333–338. 2014. View Article : Google Scholar : PubMed/NCBI | |
Melguizo C, Cabeza L, Prados J, Ortiz R, Caba O, Rama AR, Delgado ÁV and Arias JL: Enhanced antitumoral activity of doxorubicin against lung cancer cells using biodegradable poly(butylcyanoacrylate) nanoparticles. Drug Des Devel Ther. 9:6433–6444. 2015.PubMed/NCBI | |
Choi WS, Murthy GG, Edwards DA, Langer R and Klibanov AM: Inhalation delivery of proteins from ethanol suspensions. Proc Natl Acad Sci USA. 98:11103–11107. 2001. View Article : Google Scholar : PubMed/NCBI | |
Nam JP and Nah JW: Target gene delivery from targeting ligand conjugated chitosan-PEI copolymer for cancer therapy. Carbohydr Polym. 135:153–161. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhao L, Li Y, Pei D, Huang Q, Zhang H, Yang Z, Li F and Shi T: Glycopolymers/PEI complexes as serum-tolerant vectors for enhanced gene delivery to hepatocytes. Carbohydr Polym. 205:167–175. 2019. View Article : Google Scholar : PubMed/NCBI | |
B. Thapa and R. Narain; 1-Mechanism current challenges new approaches for non viral gene delivery, : Ravin Narain, Polymers and Nanomaterials for Gene Therapy. Woodhead Publishing; 2016, pp. 1–27 | |
Germershaus O, Mao S, Sitterberg J, Bakowsky U and Kissel T: Gene delivery using chitosan, trimethyl chitosan or polyethylenglycol-graft-trimethyl chitosan block copolymers: Establishment of structure-activity relationships in vitro. J Control Release. 125:145–154. 2008. View Article : Google Scholar : PubMed/NCBI | |
Mehta M, Deeksha, Tewari D, Gupta G, Awasthi R, Singh H, Pandey P, Chellappan DK, Wadhwa R, Collet T, et al: Oligonucleotide therapy: An emerging focus area for drug delivery in chronic inflammatory respiratory diseases. Chem Biol Interact. 308:206–215. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ahmad J, Akhter S, Rizwanullah Md, Amin S, Rahman M, Ahmad MZ, Rizvi MA, Kamal MA and Ahmad FJ: Nanotechnology-Based inhalation treatments for lung cancer: State of the art. Nanotechnol Sci Appl. 8:55–66. 2015.PubMed/NCBI | |
Mendes LP, Pan J and Torchilin VP: Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules. 22:14012017. View Article : Google Scholar | |
Bellini RG, Guimarães AP, Pacheco MA, Dias DM, Furtado VR, de Alencastro RB and Horta BAC: Association of the anti-tuberculosis drug rifampicin with a PAMAM dendrimer. J Mol Graph Model. 60:34–42. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rajabnezhad S, Casettari L, Lam JK, Nomani A, Torkamani MR, Palmieri GF, Rajabnejad MR and Darbandi MA: Pulmonary delivery of rifampicin microspheres using lower generation polyamidoamine dendrimers as a carrier. Powder Technol. 291:366–374. 2016. View Article : Google Scholar | |
Conti DS, Brewer D, Grashik J, Avasarala S and da Rocha SR: Poly(amidoamine) dendrimer nanocarriers and their aerosol formulations for siRNA delivery to the lung epithelium. Mol Pharm. 11:1808–1822. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhong Q, Bielski ER, Rodrigues LS, Brown MR, Reineke JJ and da Rocha SR: Conjugation to poly(amidoamine) dendrimers and pulmonary delivery reduce cardiac accumulation and enhance antitumor activity of doxorubicin in lung metastasis. Mol Pharm. 13:2363–2375. 2016. View Article : Google Scholar : PubMed/NCBI | |
Inapagolla R, Guru BR, Kurtoglu YE, Gao X, Lieh-Lai M, Bassett DJP and Kannan RM: In vivo efficacy of dendrimer-methylprednisolone conjugate formulation for the treatment of lung inflammation. Int J Pharm. 399:140–147. 2010. View Article : Google Scholar : PubMed/NCBI | |
Mehta M, Deeksha, Sharma N, Vyas M, Khurana N, Maurya PK, Singh H, de Jesus TPA, Dureja H, Chellappan DK, et al: Interactions with the macrophages: An emerging targeted approach using novel drug delivery systems in respiratory diseases. Chem Biol Interact. 304:10–19. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cortajarena AL, Ortega D, Ocampo SM, Gonzalez-García A, Couleaud P, Miranda R, Belda-Iniesta C and Ayuso-Sacido A: Engineering iron oxide nanoparticles for clinical settings. Nanobiomedicine (Rij). 1:22014. View Article : Google Scholar : PubMed/NCBI | |
Motomura K, Ishitobi M, Komoike Y, Koyama H, Noguchi A, Sumino H, Kumatani Y, Inaji H, Horinouchi T and Nakanishi K: SPIO-Enhanced magnetic resonance imaging for the detection of metastases in sentinel nodes localized by computed tomography lymphography in patients with breast cancer. Ann Surg Oncol. 18:3422–3429. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yhee JY, Im J and Nho RS: Advanced therapeutic strategies for chronic lung disease using nanoparticle-based drug delivery. J Clin Med. 5:822016. View Article : Google Scholar | |
Chen YH, Tsai CY, Huang PY, Chang MY, Cheng PC, Chou CH, Chen DH, Wang CR, Shiau AL and Wu CL: Methotrexate conjugated to gold nanoparticles inhibits tumor growth in a syngeneic lung tumor model. Mol Pharm. 4:713–722. 2007. View Article : Google Scholar : PubMed/NCBI | |
Brown SD, Nativo P, Smith JA, Stirling D, Edwards PR, Venugopal B, Flint DJ, Plumb JA, Graham D and Wheate NJ: Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J Am Chem Soc. 132:4678–4684. 2010. View Article : Google Scholar : PubMed/NCBI | |
Codullo V, Cova E, Pandolfi L, Breda S, Morosini M, Frangipane V, Malatesta M, Calderan L, Cagnone M, Pacini C, et al: Imatinib-Loaded gold nanoparticles inhibit proliferation of fibroblasts and macrophages from systemic sclerosis patients and ameliorate experimental bleomycin-induced lung fibrosis. J Control Release. 310:198–208. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Mou L and Jiang X: Surface chemistry of gold nanoparticles for health-related applications. Chem Sci. 11:923–936. 2020. View Article : Google Scholar | |
Omlor AJ, Le DD, Schlicker J, Hannig M, Ewen R, Heck S, Herr C, Kraegeloh A, Hein C, Kautenburger R, et al: Local effects on airway inflammation and systemic uptake of 5 nm PEGylated and citrated gold nanoparticles in asthmatic mice. Small. 13:10022017. View Article : Google Scholar | |
Park H, Tsutsumi H and Mihara H: Cell-Selective intracellular drug delivery using doxorubicin and α-helical peptides conjugated to gold nanoparticles. Biomaterials. 35:3480–3487. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bhaskar S and Lim S: Engineering protein nanocages as carriers for biomedical applications. NPG Asia Mater. 9:e3712017. View Article : Google Scholar : PubMed/NCBI | |
Syomin BV and Ilyin YV: Virus-Like particles as an instrument of vaccine production. Mol Biol. 53:323–334. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bobo D, Robinson KJ, Islam J, Thurecht KJ and Corrie SR: Nanoparticle-Based medicines: A review of FDA-approved materials and clinical trials to date. Pharm Res. 33:2373–2387. 2016. View Article : Google Scholar : PubMed/NCBI | |
Renukaradhya GJ, Narasimhan B and Mallapragada SK: Respiratory nanoparticle-based vaccines and challenges associated with animal models and translation. J Controll Release. 219:622–631. 2015. View Article : Google Scholar | |
Coleman CM, Liu YV, Mu H, Taylor JK, Massare M, Flyer DC, Smith GE and Frieman MB: Purified coronavirus spike protein nanoparticles induce coronavirus neutralizing antibodies in mice. Vaccine. 32:3169–3174. 2014. View Article : Google Scholar : PubMed/NCBI | |
Smith G, Raghunandan R, Wu Y, Liu Y, Massare M, Nathan M, Zhou B, Lu H, Boddapati S, Li J, et al: Respiratory syncytial virus fusion glycoprotein expressed in insect cells form protein nanoparticles that induce protective immunity in cotton rats. PLoS One. 7:e508522012. View Article : Google Scholar : PubMed/NCBI | |
Lee YT, Ko EJ, Kim KH, Hwang HS, Lee Y, Kwon YM, Kim MC, Lee YN, Jung YJ and Kang SM: Cellular immune correlates preventing disease against respiratory syncytial virus by vaccination with virus-like nanoparticles carrying fusion proteins. J Biomed Nanotechnol. 13:84–98. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pápay ZE, Kósa A, Böddi B, Merchant Z, Saleem IY, Zariwala MG, Klebovich I, Somavarapu S and Antal I: Study on the pulmonary delivery system of apigenin-loaded albumin nanocarriers with antioxidant activity. J Aerosol Med Pulm Drug Deliv. 30:274–288. 2017. View Article : Google Scholar : PubMed/NCBI | |
Labiris NR and Dolovich MB: Pulmonary drug delivery. Part I: Physiological factors affecting therapeutic effectiveness of aerosolized medications. Br J Clin Pharmacol. 56:588–599. 2003. View Article : Google Scholar : PubMed/NCBI | |
Patton JS, Fishburn CS and Weers JG: The lungs as a portal of entry for systemic drug delivery. Proc Am Thorac Soc. 1:338–344. 2004. View Article : Google Scholar : PubMed/NCBI | |
Shen AM and Minko T: Pharmacokinetics of inhaled nanotherapeutics for pulmonary delivery. J Control Release. 326:222–244. 2020. View Article : Google Scholar : PubMed/NCBI | |
Scherließ R: Future of nanomedicines for treating respiratory diseases. Expert Opin Drug Deliv. 16:59–68. 2019. View Article : Google Scholar : PubMed/NCBI | |
Oberdörster G: Safety assessment for nanotechnology and nanomedicine: Concepts of nanotoxicology. J Intern Med. 267:89–105. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ferreira AJ, Cemlyn-Jones J and Cordeiro CR: Nanoparticles, nanotechnology and pulmonary nanotoxicology. Rev Port Pneumol. 19:28–37. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jones MC, Jones SA, Riffo-Vasquez Y, Spina D, Hoffman E, Morgan A, Patel A, Page C, Forbes B and Dailey LA: Quantitative assessment of nanoparticle surface hydrophobicity and its influence on pulmonary biocompatibility. J Control Release. 183:94–104. 2014. View Article : Google Scholar : PubMed/NCBI | |
Dailey LA, Jekel N, Fink L, Gessler T, Schmehl T, Wittmar M, Kissel T and Seeger W: Investigation of the proinflammatory potential of biodegradable nanoparticle drug delivery systems in the lung. Toxicol Appl Pharmacol. 215:100–108. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zhang WF, Zhou HY, Chen XG, Tang SH and Zhang JJ: Biocompatibility study of theophylline/chitosan/beta-cyclodextrin microspheres as pulmonary delivery carriers. J Mater Sci Mater Med. 20:1321–1330. 2009. View Article : Google Scholar : PubMed/NCBI | |
Nakamura K, Matsubara H, Akagi S, Sarashina T, Ejiri K, Kawakita N, Yoshida M, Miyoshi T, Watanabe A, Nishii N and Ito H: Nanoparticle-Mediated drug delivery system for pulmonary arterial hypertension. J Clin Med. 6:482017. View Article : Google Scholar |