1
|
Sjoblom T, Jones S, Wood LD, Parsons DW,
Lin J, Barber TD, Mandelker D, Leary RJ, Ptak J, Silliman N, et al:
The consensus coding sequences of human breast and colorectal
cancers. Science. 314:268–274. 2006. View Article : Google Scholar : PubMed/NCBI
|
2
|
Mardis ER, Ding L, Dooling DJ, Larson DE,
McLellan MD, Chen K, Koboldt DC, Fulton RS, Delehaunty KD, McGrath
SD, et al: Recurring mutations found by sequencing an acute myeloid
leukemia genome. N Engl J Med. 361:1058–1066. 2009. View Article : Google Scholar : PubMed/NCBI
|
3
|
Cardaci S and Ciriolo MR: TCA cycle
defects and cancer: When metabolism tunes redox state. Int J Cell
Biol. 2012:1618372012. View Article : Google Scholar : PubMed/NCBI
|
4
|
Pastore M, Lori G, Gentilini A, Taddei ML,
Di Maira G, Campani C, Recalcati S, Invernizzi P, Marra F and Raggi
C: Multifaceted aspects of metabolic plasticity in human
cholangiocarcinoma: An overview of current perspectives. Cells.
9:5962020. View Article : Google Scholar
|
5
|
Bosnyák E, Michelhaugh SK, Klinger NV,
Kamson DO, Barger GR, Mittal S and Juhász C: Prognostic molecular
and imaging biomarkers in primary glioblastoma. Clin Nucl Med.
42:341–347. 2017. View Article : Google Scholar : PubMed/NCBI
|
6
|
Krell D, Assoku M, Galloway M, Mulholland
P, Tomlinson I and Bardella C: Screen for IDH1, IDH2, IDH3, D2HGDH
and L2HGDH mutations in glioblastoma. PLoS One. 6:e198682011.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Yang H, Ye D, Guan KL and Xiong Y: IDH1
and IDH2 mutations in tumorigenesis: Mechanistic insights and
clinical perspectives. Clin Cancer Res. 18:5562–5571. 2012.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Zhang Y, Lv W, Li Q, Wang Q, Ru Y, Xiong
X, Yan F, Pan T, Lin W and Li X: IDH2 compensates for IDH1 mutation
to maintain cell survival under hypoxic conditions in IDH1-mutant
tumor cells. Mol Med Rep. 20:1893–1900. 2019.PubMed/NCBI
|
9
|
Chittaranjan S, Chan S, Yang C, Yang KC,
Chen V, Moradian A, Firme M, Song J, Go NE, Blough MD, et al:
Mutations in CIC and IDH1 cooperatively regulate 2-hydroxyglutarate
levels and cell clonogenicity. Oncotarget. 5:7960–7979. 2014.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Hersh DS, Peng S, Dancy JG, Galisteo R,
Eschbacher JM, Castellani RJ, Heath JE, Legesse T, Kim AJ,
Woodworth GF, et al: Differential expression of the TWEAK receptor
Fn14 in IDH1 wild-type and mutant gliomas. J Neurooncol.
138:241–250. 2018. View Article : Google Scholar : PubMed/NCBI
|
11
|
Sakai Y, Yang C, Kihira S, Tsankova N,
Khan F, Hormigo A, Lai A, Cloughesy T and Nael K: MRI radiomic
features to predict IDH1 mutation status in gliomas: A machine
learning approach using gradient tree boosting. Int J Mol Sci.
21:80042020. View Article : Google Scholar
|
12
|
Kim W and Liau LM: IDH mutations in human
glioma. Neurosurg Clin N Am. 23:471–480. 2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Ducray F, El Hallani S and Idbaih A:
Diagnostic and prognostic markers in gliomas. Curr Opin Oncol.
21:537–542. 2009. View Article : Google Scholar : PubMed/NCBI
|
14
|
Bergo E, Lombardi G, Pambuku A, Della
Puppa A, Bellu L, D'Avella D and Zagonel V: Cognitive
rehabilitation in patients with gliomas and other brain tumors:
State of the Art. Biomed Res Int. 2016:30418242016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Lu C, Ward PS, Kapoor GS, Rohle D, Turcan
S, Abdel-Wahab O, Edwards CR, Khanin R, Figueroa ME, Melnick A, et
al: IDH mutation impairs histone demethylation and results in a
block to cell differentiation. Nature. 483:474–478. 2012.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Chen Z, Liu P, Li C, Luo Y, Chen I, Liang
W, Chen X, Feng Y, Xia H and Wang F: Deregulated expression of the
clock genes in gliomas. Technol Cancer Res Treat. 12:91–97. 2013.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Luo Y, Wang F, Chen LA, Chen XW, Chen ZJ,
Liu PF, li FF, Li CY and Liang W: Deregulated expression of cry1
and cry2 in human gliomas. Asian Pac J Cancer Prev. 13:5725–5728.
2012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Chang WH and Lai AG: Timing gone awry:
Distinct tumour suppressive and oncogenic roles of the circadian
clock and crosstalk with hypoxia signalling in diverse
malignancies. J Transl Med. 17:1322019. View Article : Google Scholar : PubMed/NCBI
|
19
|
Chan AB, Huber AL and Lamia KA:
Cryptochromes modulate E2F family transcription factors. Sci Rep.
10:40772020. View Article : Google Scholar : PubMed/NCBI
|
20
|
Young MW and Kay SA: Time zones: A
comparative genetics of circadian clocks. Nat Rev Genet. 2:702–715.
2001. View Article : Google Scholar : PubMed/NCBI
|
21
|
Lowrey PL and Takahashi JS: Genetics of
the mammalian circadian system: Photic entrainment, circadian
pacemaker mechanisms, and posttranslational regulation. Ann Rev
Genet. 34:533–562. 2000. View Article : Google Scholar : PubMed/NCBI
|
22
|
Dunlap JC: Molecular bases for circadian
clocks. Cell. 96:271–290. 1999. View Article : Google Scholar : PubMed/NCBI
|
23
|
Kume K, Zylka MJ, Sriram S, Shearman LP,
Weaver DR, Jin X, Maywood ES, Hastings MH and Reppert SM: mCRY1 and
mCRY2 are essential components of the negative limb of the
circadian clock feedback loop. Cell. 98:193–205. 1999. View Article : Google Scholar : PubMed/NCBI
|
24
|
van der Horst GT, Muijtjens M, Kobayashi
K, Takano R, Kanno S, Takao M, de Wit J, Verkerk A, Eker AP, van
Leenen D, et al: Mammalian Cry1 and Cry2 are essential for
maintenance of circadian rhythms. Nature. 398:627–630. 1999.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Vitaterna MH, Selby CP, Todo T, Niwa H,
Thompson C, Fruechte EM, Hitomi K, Thresher RJ, Ishikawa T,
Miyazaki J, et al: Differential regulation of mammalian period
genes and circadian rhythmicity by cryptochromes 1 and 2. Proc Natl
Acad Sci USA. 96:12114–12119. 1999. View Article : Google Scholar : PubMed/NCBI
|
26
|
Dibner C, Schibler U and Albrecht U: The
mammalian circadian timing system: Organization and coordination of
central and peripheral clocks. Ann Rev Physiol. 72:517–549. 2010.
View Article : Google Scholar
|
27
|
Harmer SL, Panda S and Kay SA: Molecular
bases of circadian rhythms. Ann Rev Cell Dev Biol. 17:215–253.
2001. View Article : Google Scholar
|
28
|
Oster H: The genetic basis of circadian
behavior. Genes Brain Behav. 5 (Suppl 2):S73–S79. 2006. View Article : Google Scholar
|
29
|
Balsalobre A, Brown SA, Marcacci L,
Tronche F, Kellendonk C, Reichardt HM, Schütz G and Schibler U:
Resetting of circadian time in peripheral tissues by glucocorticoid
signaling. Science. 289:2344–2347. 2000. View Article : Google Scholar : PubMed/NCBI
|
30
|
Damiola F, Le Minh N, Preitner N, Kornmann
B, Fleury-Olela F and Schibler U: Restricted feeding uncouples
circadian oscillators in peripheral tissues from the central
pacemaker in the suprachiasmatic nucleus. Genes Dev. 14:2950–2961.
2000. View Article : Google Scholar : PubMed/NCBI
|
31
|
Yagita K, Tamanini F, van Der Horst GT and
Okamura H: Molecular mechanisms of the biological clock in cultured
fibroblasts. Science. 292:278–281. 2001. View Article : Google Scholar : PubMed/NCBI
|
32
|
Shearman LP, Sriram S, Weaver DR, Maywood
ES, Chaves I, Zheng B, Kume K, Lee CC, van der Horst GT, Hastings
MH and Reppert SM: Interacting molecular loops in the mammalian
circadian clock. Science. 288:1013–1019. 2000. View Article : Google Scholar : PubMed/NCBI
|
33
|
Mazzoccoli G, Vinciguerra M, Papa G and
Piepoli A: Circadian clock circuitry in colorectal cancer. World J
Gastroenterol. 20:4197–4207. 2014. View Article : Google Scholar : PubMed/NCBI
|
34
|
Blakeman V, Williams JL, Meng QJ and
Streuli CH: Circadian clocks and breast cancer. Br Cancer Res.
18:892016. View Article : Google Scholar
|
35
|
Cao Q, Gery S, Dashti A, Yin D, Zhou Y, Gu
J and Koeffler HP: A role for the clock gene per1 in prostate
cancer. Cancer Res. 69:7619–7625. 2009. View Article : Google Scholar : PubMed/NCBI
|
36
|
Oda A, Katayose Y, Yabuuchi S, Yamamoto K,
Mizuma M, Shirasou S, Onogawa T, Ohtsuka H, Yoshida H, Hayashi H,
et al: Clock gene mouse period2 overexpression inhibits growth of
human pancreatic cancer cells and has synergistic effect with
cisplatin. Anticancer Res. 29:1201–1209. 2009.PubMed/NCBI
|
37
|
Zhang S, Zhang J, Deng Z, Liu H, Mao W,
Jiang F, Xia Z and Li JD: Circadian clock components RORα and Bmal1
mediate the anti-proliferative effect of MLN4924 in osteosarcoma
cells. Oncotarget. 7:66087–66099. 2016. View Article : Google Scholar : PubMed/NCBI
|
38
|
Papagiannakopoulos T, Bauer MR, Davidson
SM, Heimann M, Subbaraj L, Bhutkar A, Bartlebaugh J, Vander Heiden
MG and Jacks T: Circadian rhythm disruption promotes lung
tumorigenesis. Cell Metab. 24:324–331. 2016. View Article : Google Scholar : PubMed/NCBI
|
39
|
Yang MY, Lin PM, Hsiao HH, Hsu JF, Lin HY,
Hsu CM, Chen IY, Su SW, Liu YC and Lin SF: Up-regulation of PER3
expression is correlated with better clinical outcome in acute
leukemia. Anticancer Res. 35:6615–6622. 2015.PubMed/NCBI
|
40
|
Farshadi E, van der Horst GTJ and Chaves
I: Molecular links between the circadian clock and the cell cycle.
J Mol Biol. 432:3515–3524. 2020. View Article : Google Scholar : PubMed/NCBI
|
41
|
Scheving LE, Tsai TH and Scheving LA:
Chronobiology of the intestinal tract of the mouse. Am J Anatomy.
168:433–465. 1983. View Article : Google Scholar
|
42
|
Farshadi E, Yan J, Leclere P, Goldbeter A,
Chaves I and van der Horst GTJ: The positive circadian regulators
CLOCK and BMAL1 control G2/M cell cycle transition
through Cyclin B1. Cell Cycle. 18:16–33. 2019. View Article : Google Scholar : PubMed/NCBI
|
43
|
Shan DZ, Zhang C and Cao XM: Preparation
and expression of isocitrate dehydrogenase 1 and mutant recombinant
lentivirus. Chin J Neuroanatomy. 36:200–206. 2020.
|
44
|
Yu H, Yuan Y, Shen H and Cheng T:
Hematopoietic stem cell exhaustion impacted by p18 INK4C and p21
Cip1/Waf1 in opposite manners. Blood. 107:1200–1206. 2006.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Yuan Y, Shen H, Franklin DS, Scadden DT
and Cheng T: In vivo self-renewing divisions of haematopoietic stem
cells are increased in the absence of the early G1-phase
inhibitor, p18INK4C. Nat Cell Biol. 6:436–442. 2004. View Article : Google Scholar : PubMed/NCBI
|
46
|
Sherr CJ: Cancer cell cycles. Science.
274:1672–1677. 1996. View Article : Google Scholar : PubMed/NCBI
|
47
|
Mandal AS, Biswas N, Karim KM, Guha A,
Chatterjee S, Behera M and Kuotsu K: Drug delivery system based on
chronobiology-A review. J Control Release. 147:314–325. 2010.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Zhao Q, Zheng G, Yang K, Ao YR, Su XL, Li
Y and Lv XQ: The clock gene PER1 plays an important role in
regulating the clock gene network in human oral squamous cell
carcinoma cells. Oncotarget. 7:70290–70302. 2016. View Article : Google Scholar : PubMed/NCBI
|
49
|
Qu M, Duffy T, Hirota T and Kay SA:
Nuclear receptor HNF4A transrepresses CLOCK:BMAL1 and modulates
tissue-specific circadian networks. Proc Natl Acad Sci USA.
115:E12305–E12312. 2018. View Article : Google Scholar : PubMed/NCBI
|
50
|
Shafi AA and Knudsen KE: Cancer and the
circadian clock. Cancer Res. 79:3806–3814. 2019. View Article : Google Scholar : PubMed/NCBI
|
51
|
Hou X, Zhang J, Wang Y, Xiong W and Mi J:
TGFBR-IDH1-Cav1 axis promotes TGF-beta signalling in
cancer-associated fibroblast. Oncotarget. 8:83962–83974. 2017.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Lopez M, Meier D, Muller A, Franken P,
Fujita J and Fontana A: Tumor necrosis factor and transforming
growth factor beta regulate clock genes by controlling the
expression of the cold inducible RNA-binding protein (CIRBP). J
Biol Chem. 289:2736–2744. 2014. View Article : Google Scholar : PubMed/NCBI
|
53
|
Sato F, Sato H, Jin D, Bhawal UK, Wu Y,
Noshiro M, Kawamoto T, Fujimoto K, Seino H, Morohashi S, et al:
Smad3 and Snail show circadian expression in human gingival
fibroblasts, human mesenchymal stem cell, and in mouse liver.
Biochem Biophys Res Commun. 419:441–446. 2012. View Article : Google Scholar : PubMed/NCBI
|
54
|
Kang Y, He W, Tulley S, Gupta GP,
Serganova I, Chen CR, Manova-Todorova K, Blasberg R, Gerald WL and
Massagué J: Breast cancer bone metastasis mediated by the Smad
tumor suppressor pathway. Proc Natl Acad Sci USA. 102:13909–13914.
2005. View Article : Google Scholar : PubMed/NCBI
|
55
|
Dou C, Lee J, Liu B, Liu F, Massague J,
Xuan S and Lai E: BF-1 interferes with transforming growth factor
beta signaling by associating with Smad partners. Mol Cell Biol.
20:6201–6211. 2000. View Article : Google Scholar : PubMed/NCBI
|
56
|
Parisot S, Wells W III, Chemouny S, Duffau
H and Paragios N: Concurrent tumor segmentation and registration
with uncertainty-based sparse non-uniform graphs. Med Image Anal.
18:647–659. 2014. View Article : Google Scholar : PubMed/NCBI
|
57
|
de Robles P, Fiest KM, Frolkis AD,
Pringsheim T, Atta C, St Germaine-Smith C, Day L, Lam D and Jette
N: The worldwide incidence and prevalence of primary brain tumors:
A systematic review and meta-analysis. Neurooncology. 17:776–783.
2015.
|
58
|
Eckel-Passow JE, Lachance DH, Molinaro AM,
Walsh KM, Decker PA, Sicotte H, Pekmezci M, Rice T, Kosel ML,
Smirnov IV, et al: Glioma Groups Based on 1p/19q, IDH, and TERT
promoter mutations in tumors. N Engl J Med. 372:2499–2508. 2015.
View Article : Google Scholar : PubMed/NCBI
|
59
|
Miller JJ, Shih HA, Andronesi OC and
Cahill DP: Isocitrate dehydrogenase-mutant glioma: Evolving
clinical and therapeutic implications. Cancer. 123:4535–4546. 2017.
View Article : Google Scholar : PubMed/NCBI
|
60
|
Ferreira MSV, Sørensen MD, Pusch S, Beier
D, Bouillon AS, Kristensen BW, Brümmendorf TH, Beier CP and Beier
F: Alternative lengthening of telomeres is the major telomere
maintenance mechanism in astrocytoma with isocitrate dehydrogenase
1 mutation. J Neurooncol. 147:1–14. 2020. View Article : Google Scholar : PubMed/NCBI
|
61
|
Karpel-Massler G, Nguyen TTT, Shang E and
Siegelin MD: Novel IDH1-targeted glioma therapies. CNS Drugs.
33:1155–1166. 2019. View Article : Google Scholar : PubMed/NCBI
|
62
|
Salavaty A, Mohammadi N, Shahmoradi M and
Naderi Soorki M: Bioinformatic analysis of circadian expression of
oncogenes and tumor suppressor genes. Bioinform Biol Insights.
11:11779322177469912017. View Article : Google Scholar : PubMed/NCBI
|
63
|
Jiang W, Zhao S, Jiang X, Zhang E, Hu G,
Hu B, Zheng P, Xiao J, Lu Z, Lu Y, et al: The circadian clock gene
Bmal1 acts as a potential anti-oncogene in pancreatic cancer by
activating the p53 tumor suppressor pathway. Cancer Lett.
371:314–325. 2016. View Article : Google Scholar : PubMed/NCBI
|
64
|
Lin F, Chen Y, Li X, Zhao Q and Tan Z:
Over-expression of circadian clock gene Bmal1 affects proliferation
and the canonical Wnt pathway in NIH-3T3 cells. Cell Biochem Funct.
31:166–172. 2013. View Article : Google Scholar : PubMed/NCBI
|
65
|
Jung CH, Kim EM, Park JK, Hwang SG, Moon
SK, Kim WJ and Um HD: Bmal1 suppresses cancer cell invasion by
blocking the phosphoinositide 3-kinase-Akt-MMP-2 signaling pathway.
Oncol Rep. 29:2109–2113. 2013. View Article : Google Scholar : PubMed/NCBI
|
66
|
Guan F, Kang Z, Wang L, Wang K, Mao BB,
Peng WC, Zhang BL, Lin ZY, Zhang JT and Hu ZQ: Retinol
dehydrogenase 10 promotes metastasis of glioma cells via the
transforming growth factor-β/SMAD signaling pathway. Chin Med J
(Engl). 132:2430–2437. 2019. View Article : Google Scholar : PubMed/NCBI
|
67
|
Derynck R and Zhang YE: Smad-dependent and
Smad-independent pathways in TGF-beta family signalling. Nature.
425:577–584. 2003. View Article : Google Scholar : PubMed/NCBI
|
68
|
Frei K, Gramatzki D, Tritschler I,
Schroeder JJ, Espinoza L, Rushing EJ and Weller M: Transforming
growth factor-β pathway activity in glioblastoma. Oncotarget.
6:5963–5977. 2015. View Article : Google Scholar : PubMed/NCBI
|
69
|
Huse K, Bakkebø M, Wälchli S, Oksvold MP,
Hilden VI, Forfang L, Bredahl ML, Liestøl K, Alizadeh AA, Smeland
EB and Myklebust JH: Role of Smad proteins in resistance to
BMP-induced growth inhibition in B-cell lymphoma. PLoS One.
7:e461172012. View Article : Google Scholar : PubMed/NCBI
|
70
|
Sadeghi Y, Tabatabaei Irani P, Rafiee L,
Tajadini M, Amouheidari A and Javanmard SH: Evaluation of rs1982073
polymorphism of transforming growth factor-β1 in glioblastoma. J
Res Med Sci. 24:402019. View Article : Google Scholar : PubMed/NCBI
|
71
|
Dong C, Gongora R, Sosulski ML, Luo F and
Sanchez CG: Regulation of transforming growth factor-beta1
(TGF-β1)-induced pro-fibrotic activities by circadian clock gene
BMAL1. Respir Res. 17:42016. View Article : Google Scholar : PubMed/NCBI
|
72
|
Puram RV, Kowalczyk MS, de Boer CG,
Schneider RK, Miller PG, McConkey M, Tothova Z, Tejero H, Heckl D,
Järås M, et al: Core circadian clock genes regulate leukemia stem
cells in AML. Cell. 165:303–316. 2016. View Article : Google Scholar : PubMed/NCBI
|
73
|
Li A, Lin X, Tan X, Yin B, Han W, Zhao J,
Yuan J, Qiang B and Peng X: Circadian gene Clock contributes to
cell proliferation and migration of glioma and is directly
regulated by tumor-suppressive miR-124. FEBS Lett. 587:2455–2460.
2013. View Article : Google Scholar : PubMed/NCBI
|
74
|
Dong Z, Zhang G, Qu M, Gimple RC, Wu Q,
Qiu Z, Prager BC, Wang X, Kim LJY, Morton AR, et al: Targeting
glioblastoma stem cells through disruption of the circadian clock.
Cancer Discov. 9:1556–1573. 2019. View Article : Google Scholar : PubMed/NCBI
|
75
|
Liu WS, Chan SH, Chang HT, Li GC, Tu YT,
Tseng HH, Fu TY, Chang HY, Liou HH, Ger LP and Tsai KW: Isocitrate
dehydrogenase 1-snail axis dysfunction significantly correlates
with breast cancer prognosis and regulates cell invasion ability.
Breast Cancer Res. 20:252018. View Article : Google Scholar : PubMed/NCBI
|
76
|
Xia HC, Niu ZF, Ma H, Cao SZ, Hao SC, Liu
ZT and Wang F: Deregulated expression of the Per1 and Per2 in human
gliomas. Can J Neurol Sci. 37:365–370. 2010. View Article : Google Scholar : PubMed/NCBI
|