A combination of PD‑1/PD‑L1 inhibitors: The prospect of overcoming the weakness of tumor immunotherapy (Review)
- Authors:
- Xianbin Kong
- Peng Lu
- Chuanxin Liu
- Yuzhu Guo
- Yuying Yang
- Yingying Peng
- Fangyuan Wang
- Zhichao Bo
- Xiaoxin Dou
- Haoyang Shi
- Jingyan Meng
-
Affiliations: Integrated Traditional Chinese and Western Medicine Laboratory, College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China, Department of Pharmaceutical Analysis, School of Chinese Materia Medical, Beijing University of Chinese Medicine, Beijing 102488, P.R. China, Department of Radiotherapy, Tianjin Hospital, Tianjin 300211, P.R. China - Published online on: March 16, 2021 https://doi.org/10.3892/mmr.2021.12001
- Article Number: 362
-
Copyright: © Kong et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Duan J, Cui L, Zhao X, Bai H, Cai S, Wang G, Zhao Z, Zhao J, Chen S, Song J, et al: Use of immunotherapy with programmed cell death 1 vs programmed cell death ligand 1 inhibitors in patients with cancer: A systematic review and meta-analysis. JAMA Oncol. 6:375–384. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chiu YM, Tsai CL, Kao JT, Hsieh CT, Shieh DC, Lee YJ, Tsay GJ, Cheng KS and Wu YY: PD-1 and PD-L1 up-regulation promotes T-cell apoptosis in gastric adenocarcinoma. Anticancer Res. 38:2069–2078. 2018.PubMed/NCBI | |
Wang DY, Salem JE, Cohen JV, Chandra S, Menzer C, Ye F, Zhao S, Das S, Beckermann KE, Ha L, et al: Fatal toxic effects associated with immune checkpoint inhibitors: A systematic review and meta-analysis. JAMA Oncol. 4:1721–1728. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jin HT, Ahmed R and Okazaki T: Role of PD-1 in regulating T-cell immunity. Curr Top Microbiol Immunol. 350:17–37. 2011.PubMed/NCBI | |
Ribas A and Wolchok JD: Cancer immunotherapy using checkpoint blockade. Science. 359:1350–1355. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sanmamed MF and Chen L: A paradigm shift in cancer immunotherapy: From enhancement to normalization. Cell. 175:313–326. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ribas A, Dummer R, Puzanov I, VanderWalde A, Andtbacka RHI, Michielin O, Olszanski AJ, Malvehy J, Cebon J, Fernandez E, et al: Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell. 170:1109–1119.e10. 2017. View Article : Google Scholar : PubMed/NCBI | |
Nowicki TS, Hu-Lieskovan S and Ribas A: Mechanisms of resistance to PD-1 and PD-L1 blockade. Cancer J. 24:47–53. 2018. View Article : Google Scholar : PubMed/NCBI | |
Torrejon DY, Abril-Rodriguez G, Champhekar AS, Tsoi J, Campbell KM, Kalbasi A, Parisi G, Zaretsky JM, Garcia-Diaz A, Puig-Saus C, et al: Overcoming genetically based resistance mechanisms to PD-1 blockade. Cancer Discov. 10:1140–1157. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W, Hu-Lieskovan S, Torrejon DY, Abril-Rodriguez G, Sandoval S, Barthly L, et al: Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med. 375:819–829. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li J, Chen Y, Shi X, Le X, Feng F, Chen J, Zhou C, Chen Y, Wen S, Zeng H, et al: A systematic and genome-wide correlation meta-analysis of PD-L1 expression and targetable NSCLC driver genes. J Thorac Dis. 9:2560–2571. 2017. View Article : Google Scholar : PubMed/NCBI | |
Anderson AC, Joller N and Kuchroo VK: Lag-3, Tim-3, and TIGIT: Co-inhibitory receptors with specialized functions in immune regulation. Immunity. 44:989–1004. 2016. View Article : Google Scholar : PubMed/NCBI | |
Koyama S, Akbay EA, Li YY, Herter-Sprie GS, Buczkowski KA, Richards WG, Gandhi L, Redig AJ, Rodig SJ, Asahina H, et al: Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun. 7:105012016. View Article : Google Scholar : PubMed/NCBI | |
Jenkins RW, Barbie DA and Flaherty KT: Mechanisms of resistance to immune checkpoint inhibitors. Br J Cancer. 118:9–16. 2018. View Article : Google Scholar : PubMed/NCBI | |
Garg AD and Agostinis P: Cell death and immunity in cancer: From danger signals to mimicry of pathogen defense responses. Immunol Rev. 280:126–148. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cai J, Lin Y, Zhang H, Liang J, Tan Y, Cavenee WK and Yan G: Selective replication of oncolytic virus M1 results in a bystander killing effect that is potentiated by Smac mimetics. Proc Natl Acad Sci SA. 114:6812–6817. 2017. | |
VanSeggelen H, Tantalo DG, Afsahi A, Hammill JA and Bramson JL: Chimeric antigen receptor-engineered T cells as oncolytic virus carriers. Mol Ther Oncolytics. 2:150142015. View Article : Google Scholar : PubMed/NCBI | |
Coffin R: Interview with Robert Coffin, inventor of T-VEC: The first oncolytic immunotherapy approved for the treatment of cancer. Immunotherapy. 8:103–106. 2016. View Article : Google Scholar : PubMed/NCBI | |
Andtbacka RH, Kaufman HL, Collichio F, Amatruda T, Senzer N, Chesney J, Delman KA, Spitler LE, Puzanov I, Agarwala SS, et al: Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol. 33:2780–2788. 2015. View Article : Google Scholar : PubMed/NCBI | |
Guo ZS, Lu B, Guo Z, Giehl E, Feist M, Dai E, Liu W, Storkus WJ, He Y, Liu Z and Bartlett DL: Vaccinia virus-mediated cancer immunotherapy: Cancer vaccines and oncolytics. J Immunother Cancer. 7:62019. View Article : Google Scholar : PubMed/NCBI | |
Kowalsky SJ, Liu Z, Feist M, Berkey SE, Ma C, Ravindranathan R, Dai E, Roy EJ, Guo ZS and Bartlett DL: Superagonist IL-15-armed oncolytic virus elicits potent antitumor immunity and therapy that are enhanced with PD-1 blockade. Mol Ther. 26:2476–2486. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang N, Wang J, Zhang Z, Cao H, Yan W, Chu Y, Chard Dunmall LS and Wang Y: A novel vaccinia virus enhances anti-tumor efficacy and promotes a long-term anti-tumor response in a murine model of colorectal cancer. Mol Ther Oncolytics. 20:71–81. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Ravindranathan R, Kalinski P, Guo ZS and Bartlett DL: Rational combination of oncolytic vaccinia virus and PD-L1 blockade works synergistically to enhance therapeutic efficacy. Nat Commun. 8:147542017. View Article : Google Scholar : PubMed/NCBI | |
Melero I, Gato M, Shekarian T, Aznar A, Valsesia-Wittmann S, Caux C, Etxeberrria I, Teijeira A and Marabelle A: Repurposing infectious disease vaccines for intratumoral immunotherapy. J Immunother Cancer. 8:e0004432020. View Article : Google Scholar : PubMed/NCBI | |
Shekarian T, Sivado E, Jallas AC, Depil S, Kielbassa J, Janoueix-Lerosey I, Hutter G, Goutagny N, Bergeron C, Viari A, et al: Repurposing rotavirus vaccines for intratumoral immunotherapy can overcome resistance to immune checkpoint blockade. Sci Transl Med. 11:eaat50252019. View Article : Google Scholar : PubMed/NCBI | |
Shemesh CS, Hsu JC, Hosseini I, Shen BQ, Rotte A, Twomey P, Girish S and Wu B: Personalized cancer vaccines: Clinical landscape, challenges, and opportunities. Mol Ther. 29:555–570. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu R, Zhou C, Wang D, Ma W, Lin C, Wang Y, Liang X, Li J, Guo S, Wang Y, et al: Enhancement of DNA vaccine potency by sandwiching antigen-coding gene between secondary lymphoid tissue chemokine (SLC) and IgG Fc fragment genes. Cancer Biol Ther. 5:427–434. 2006. View Article : Google Scholar : PubMed/NCBI | |
Tondini E, Arakelian T, Oosterhuis K, Camps M, van Duikeren S, Han W, Arens R, Zondag G, van Bergen J and Ossendorp F: A poly-neoantigen DNA vaccine synergizes with PD-1 blockade to induce T cell-mediated tumor control. Oncoimmunology. 8:16525392019. View Article : Google Scholar : PubMed/NCBI | |
Xu G, Feng D, Yao Y, Li P, Sun H, Yang H, Li C, Jiang R, Sun B and Chen Y: Listeria-based hepatocellular carcinoma vaccine facilitates anti-PD-1 therapy by regulating macrophage polarization. Oncogene. 39:1429–1444. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhao H, Xu J, Li Y, Guan X, Han X, Xu Y, Zhou H, Peng R, Wang J and Liu Z: Nanoscale coordination polymer based nanovaccine for tumor immunotherapy. ACS Nano. 13:13127–13135. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gibney GT, Kudchadkar RR, DeConti RC, Thebeau MS, Czupryn MP, Tetteh L, Eysmans C, Richards A, Schell MJ, Fisher KJ, et al: Safety, correlative markers, and clinical results of adjuvant nivolumab in combination with vaccine in resected high-risk metastatic melanoma. Clin Cancer Res. 21:712–720. 2015. View Article : Google Scholar : PubMed/NCBI | |
Weber JS, Kudchadkar RR, Yu B, Gallenstein D, Horak CE, Inzunza HD, Zhao X, Martinez AJ, Wang W, Gibney G, et al: Safety, efficacy, and biomarkers of nivolumab with vaccine in ipilimumab-refractory or -naive melanoma. J Clin Oncol. 31:4311–4318. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J, Bozym DJ, Zhang W, Luoma A, Giobbie-Hurder A, Peter L, et al: An immunogenic personal neoantigen vaccine for patients with melanoma. Nature. 547:217–221. 2017. View Article : Google Scholar : PubMed/NCBI | |
Crosby EJ, Acharya CR, Haddad AF, Rabiola CA, Lei G, Wei JP, Yang XY, Wang T, Liu CX, Wagner KU, et al: Stimulation of oncogene-specific tumor-infiltrating T cells through combined vaccine and αPD-1 enable sustained antitumor responses against established HER2 breast cancer. Clin Cancer Res. 26:4670–4681. 2020. View Article : Google Scholar : PubMed/NCBI | |
Di Tacchio M, Macas J, Weissenberger J, Sommer K, Bähr O, Steinbach JP, Senft C, Seifert V, Glas M, Herrlinger U, et al: Tumor vessel normalization, immunostimulatory reprogramming, and improved survival in glioblastoma with combined inhibition of PD-1, angiopoietin-2, and VEGF. Cancer Immunol Res. 7:1910–1927. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gao F and Yang C: Anti-VEGF/VEGFR2 monoclonal antibodies and their combinations with PD-1/PD-L1 inhibitors in clinic. Curr Cancer Drug Targets. 20:3–18. 2020. View Article : Google Scholar : PubMed/NCBI | |
Amin A, Plimack ER, Ernstoff MS, Lewis LD, Bauer TM, McDermott DF, Carducci M, Kollmannsberger C, Rini BI, Heng DYC, et al: Safety and efficacy of nivolumab in combination with sunitinib or pazopanib in advanced or metastatic renal cell carcinoma: The CheckMate 016 study. J Immunother Cancer. 6:1092018. View Article : Google Scholar : PubMed/NCBI | |
Zhao S, Ren S, Jiang T, Zhu B, Li X, Zhao C, Jia Y, Shi J, Zhang L, Liu X, et al: Low-dose apatinib optimizes tumor microenvironment and potentiates antitumor effect of PD-1/PD-L1 blockade in lung cancer. Cancer Immunol Res. 7:630–643. 2019.PubMed/NCBI | |
Garcia J, Hurwitz HI, Sandler AB, Miles D, Coleman RL, Deurloo R and Chinot OL: Bevacizumab (Avastin®) in cancer treatment: A review of 15 years of clinical experience and future outlook. Cancer Treat Rev. 86:1020172020. View Article : Google Scholar : PubMed/NCBI | |
Osada T, Chong G, Tansik R, Hong T, Spector N, Kumar R, Hurwitz HI, Dev I, Nixon AB, Lyerly HK, et al: The effect of anti-VEGF therapy on immature myeloid cell and dendritic cells in cancer patients. Cancer Immunol Immunother. 57:1115–1124. 2008. View Article : Google Scholar : PubMed/NCBI | |
McDermott DF, Huseni MA, Atkins MB, Motzer RJ, Rini BI, Escudier B, Fong L, Joseph RW, Pal SK, Reeves JA, et al: Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma. Nat Med. 24:749–757. 2018. View Article : Google Scholar : PubMed/NCBI | |
Reck M, Mok TSK, Nishio M, Jotte RM, Cappuzzo F, Orlandi F, Stroyakovskiy D, Nogami N, Rodríguez-Abreu D, Moro-Sibilot D, et al: Atezolizumab plus bevacizumab and chemotherapy in non-small-cell lung cancer (IMpower150): Key subgroup analyses of patients with EGFR mutations or baseline liver metastases in a randomised, open-label phase 3 trial. Lancet Respir Med. 7:387–401. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sigismund S, Avanzato D and Lanzetti L: Emerging functions of the EGFR in cancer. Mol Oncol. 12:3–20. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Han C, Dong C, Shen A, Hsu E, Ren Z, Lu C, Liu L, Zhang A, Timmerman C, et al: Hypofractionated EGFR tyrosine kinase inhibitor limits tumor relapse through triggering innate and adaptive immunity. Sci Immunol. 4:eaav64732019. View Article : Google Scholar : PubMed/NCBI | |
Wu SG and Shih JY: Management of acquired resistance to EGFR TKI-targeted therapy in advanced non-small cell lung cancer. Mol Cancer. 17:382018. View Article : Google Scholar : PubMed/NCBI | |
Chen N, Fang W, Zhan J, Hong S, Tang Y, Kang S, Zhang Y, He X, Zhou T, Qin T, et al: Upregulation of PD-L1 by EGFR activation mediates the immune escape in EGFR-Driven NSCLC: Implication for optional immune targeted therapy for NSCLC patients with EGFR mutation. J Thorac Oncol. 10:910–923. 2015. View Article : Google Scholar : PubMed/NCBI | |
Camidge DR, Doebele RC and Kerr KM: Comparing and contrasting predictive biomarkers for immunotherapy and targeted therapy of NSCLC. Nat Rev Clin Oncol. 16:341–355. 2019. View Article : Google Scholar : PubMed/NCBI | |
Haratani K, Hayashi H, Tanaka T, Kaneda H, Togashi Y, Sakai K, Hayashi K, Tomida S, Chiba Y, Yonesaka K, et al: Tumor immune microenvironment and nivolumab efficacy in EGFR mutation-positive non-small-cell lung cancer based on T790M status after disease progression during EGFR-TKI treatment. Ann Oncol. 28:1532–1539. 2017. View Article : Google Scholar : PubMed/NCBI | |
Garassino MC, Cho BC, Kim JH, Mazières J, Vansteenkiste J, Lena H, Corral Jaime J, Gray JE, Powderly J, Chouaid C, et al: Durvalumab as third-line or later treatment for advanced non-small-cell lung cancer (ATLANTIC): An open-label, single-arm, phase 2 study. Lancet Oncol. 19:521–536. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yang JC, Gadgeel SM, Sequist LV, Wu CL, Papadimitrakopoulou VA, Su WC, Fiore J, Saraf S, Raftopoulos H and Patnaik A: Pembrolizumab in combination with erlotinib or gefitinib as first-line therapy for advanced NSCLC with sensitizing EGFR mutation. J Thorac Oncol. 14:553–559. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhai L, Bell A, Ladomersky E, Lauing KL, Bollu L, Sosman JA, Zhang B, Wu JD, Miller SD, Meeks JJ, et al: Immunosuppressive IDO in cancer: Mechanisms of action, animal models, and targeting strategies. Front Immunol. 11:11852020. View Article : Google Scholar : PubMed/NCBI | |
Siu LL, Gelmon K, Chu Q, Pachynski R, Alese O, Basciano P, Walker J, Mitra P, Zhu L, Phillips P, et al: Abstract CT116: BMS-986205, an optimized indoleamine 2,3-dioxygenase 1 (IDO1) inhibitor, is well tolerated with potent pharmacodynamic (PD) activity, alone and in combination with nivolumab (nivo) in advanced cancers in a phase 1/2a trial. Cancer Res. 77 (Suppl 13):CT1162017. | |
Zakharia Y, Rixe O, Ward JH, Drabick JJ, Shaheen MF, Milhem MM, Munn D, Kennedy EP, Vahanian NN, Link CJ, et al: Phase 2 trial of the IDO pathway inhibitor indoximod plus checkpoint inhibition for the treatment of patients with advanced melanoma. J Clin Oncol. 36 (Suppl 15):S95122018. View Article : Google Scholar | |
Bahary N, Wang-Gillam A, Haraldsdottir S, Somer BG, Lee JS, O'Rourke MA, Nayak-Kapoor A, Beatty GL, Liu M, Delman D, et al: Phase 2 trial of the IDO pathway inhibitor indoximod plus gemcitabine/nab-paclitaxel for the treatment of patients with metastatic pancreas cancer. J Clin Oncol. 36 (Suppl 15):S40152018. View Article : Google Scholar | |
Jha GG, Gupta S, Tagawa ST, Koopmeiners JS, Vivek S, Dudek AZ, Cooley SA, Blazar BR and Miller JS: A phase II randomized, double-blind study of sipuleucel-T followed by IDO pathway inhibitor, indoximod, or placebo in the treatment of patients with metastatic castration resistant prostate cancer (mCRPC). J Clin Oncol. 35 (Suppl 15):S30662017. View Article : Google Scholar | |
Zakharia Y, Drabick JJ, Khleif S, McWilliams RR, Munn D, Link CJ, Vahanian NN, Kennedy E, Shaheen MF, Rixe O and Milhem MM: Updates on phase1b/2 trial of the indoleamine 2,3-dioxygenase pathway (IDO) inhibitor indoximod plus checkpoint inhibitors for the treatment of unresectable stage 3 or 4 melanoma. J Clin Oncol. 34 (Suppl 15):S30752016. View Article : Google Scholar | |
Hamid O, Bauer TM, Spira AI, Smith DC, Olszanski AJ, Tarhini AA, Lara P, Gajewski T, Wasser JS, Patel SP, et al: Safety of epacadostat 100 mg bid plus pembrolizumab 200 mg Q3W in advanced solid tumors: Phase 2 data from ECHO-202/KEYNOTE-037. J Clin Oncol. 35 (Suppl 15):S30122017. View Article : Google Scholar | |
Andrews LP, Marciscano AE, Drake CG and Vignali DA: LAG3 (CD223) as a cancer immunotherapy target. Immunol Rev. 276:80–96. 2017. View Article : Google Scholar : PubMed/NCBI | |
Huang RY, Eppolito C, Lele S, Shrikant P, Matsuzaki J and Odunsi K: LAG3 and PD1 co-inhibitory molecules collaborate to limit CD8+ T cell signaling and dampen antitumor immunity in a murine ovarian cancer model. Oncotarget. 6:27359–27377. 2015. View Article : Google Scholar : PubMed/NCBI | |
Goding SR, Wilson KA, Xie Y, Harris KM, Baxi A, Akpinarli A, Fulton A, Tamada K, Strome SE and Antony PA: Restoring immune function of tumor-specific CD4+ T cells during recurrence of melanoma. J Immunol. 190:4899–4909. 2013. View Article : Google Scholar : PubMed/NCBI | |
Dahlén E, Veitonmäki N and Norlén P: Bispecific antibodies in cancer immunotherapy. Ther Adv Vaccines Immunother. 6:3–17. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ascierto PA, Bhatia S, Bono P, Bono P, Sanborn RE, Lipson EJ, Callahan MK, Gajewski T, Gomez-Roca CA, Hodi FS, et al: Initial efficacy of anti-lymphocyte activation gene-3 (anti-LAG-3; BMS-986016) in combination with nivolumab (nivo) in PTS with melanoma (MEL) previously treated with anti-PD-1/PD-L1 therapy. J Clini Oncol. 35 (Suppl 15):S95202017. View Article : Google Scholar | |
Puhr HC and Ilhan-Mutlu A: New emerging targets in cancer immunotherapy: The role of LAG3. ESMO Open. 4:e0004822019. View Article : Google Scholar : PubMed/NCBI | |
Yasinska IM, Sakhnevych SS, Pavlova L, Teo Hansen Selnø A, Teuscher Abeleira AM, Benlaouer O, Gonçalves Silva I, Mosimann M, Varani L, Bardelli M, et al: The Tim-3-galectin-9 pathway and its regulatory mechanisms in human breast cancer. Front Immunol. 10:15942019. View Article : Google Scholar : PubMed/NCBI | |
Li H, Wu K, Tao K, Chen L, Zheng Q, Lu X, Liu J, Shi L, Liu C, Wang G and Zou W: Tim-3/galectin-9 signaling pathway mediates T-cell dysfunction and predicts poor prognosis in patients with hepatitis B virus-associated hepatocellular carcinoma. Hepatology. 56:1342–1351. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kurtulus S, Madi A, Escobar G, Klapholz M, Nyman J, Christian E, Pawlak M, Dionne D, Xia J, Rozenblatt-Rosen O, et al: Checkpoint blockade immunotherapy induces dynamic changes in PD-1−CD8+ tumor-infiltrating T cells. Immunity. 50:181–194.e6. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK and Anderson AC: Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med. 207:2187–2194. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sun F, Guo ZS, Gregory AD, Shapiro SD, Xiao G and Qu Z: Dual but not single PD-1 or TIM-3 blockade enhances oncolytic virotherapy in refractory lung cancer. J Immunother Cance. 8:e0002942020. View Article : Google Scholar | |
Huang TY, Huang GL, Zhang CY, Zhuang BW, Liu BX, Su LY, Ye JY, Xu M, Kuang M and Xie XY: Supramolecular photothermal nanomedicine mediated distant tumor inhibition via PD-1 and TIM-3 blockage. Front Chem. 8:12020. View Article : Google Scholar : PubMed/NCBI | |
Gestermann N, Saugy D, Martignier C, Tillé L, Fuertes Marraco SA, Zettl M, Tirapu I, Speiser DE and Verdeil G: LAG-3 and PD-1+LAG-3 inhibition promote anti-tumor immune responses in human autologous melanoma/T cell co-cultures. Oncoimmunology. 9:17367922020. View Article : Google Scholar : PubMed/NCBI | |
Friedlaender A, Addeo A and Banna G: New emerging targets in cancer immunotherapy: The role of TIM3. ESMO Open. 4 (Suppl 3):e0004972019. View Article : Google Scholar : PubMed/NCBI | |
Davar D, Boasberg PD, Eroglu Z, Falchook G, Gainor J, Hamilton E, Hecht R, Luke J, Pishvaian M, Ribas A, et al: Abstract O21: A phase 1 study of TSR-022, an anti-TIM-3 monoclonal antibody, in combination with TSR-042 (anti-PD-1) in patients with colorectal cancer and post-PD-1 NSCLC and melanoma. J Immuno Therapy Cancer. 6 (Suppl 1):S1552018. | |
Wu L, Mao L, Liu JF, Chen L, Yu GT, Yang LL, Wu H, Bu LL, Kulkarni AB, Zhang WF and Sun ZJ: Blockade of TIGIT/CD155 signaling reverses T-cell exhaustion and enhances antitumor capability in head and neck squamous cell carcinoma. Cancer Immunol Res. 7:1700–1713. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chauvin JM, Pagliano O, Fourcade J, Sun Z, Wang H, Sander C, Kirkwood JM, Chen TH, Maurer M, Korman AJ and Zarour HM: TIGIT and PD-1 impair tumor antigen-specific CD8+ T cells in melanoma patients. J Clin Invest. 125:2046–2058. 2015. View Article : Google Scholar : PubMed/NCBI | |
Grapin M, Richard C, Limagne E, Boidot R, Morgand V, Bertaut A, Derangere V, Laurent PA, Thibaudin M, Fumet JD, et al: Optimized fractionated radiotherapy with anti-PD-L1 and anti-TIGIT: A promising new combination. J Immunother Cancer. 7:1602019. View Article : Google Scholar : PubMed/NCBI | |
Johnston RJ, Comps-Agrar L, Hackney J, Yu X, Huseni M, Yang Y, Park S, Javinal V, Chiu H, Irving B, et al: The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function. Cancer Cell. 26:923–937. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kurtulus S, Sakuishi K, Ngiow SF, Joller N, Tan DJ, Teng MW, Smyth MJ, Kuchroo VK and Anderson AC: TIGIT predominantly regulates the immune response via regulatory T cells. J Clin Invest. 125:4053–4062. 2015. View Article : Google Scholar : PubMed/NCBI | |
Finetti F and Baldari CT: The immunological synapse as a pharmacological target. Pharmacol Res. 134:118–133. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chester C, Sanmamed MF, Wang J and Melero I: Immunotherapy targeting 4-1BB: Mechanistic rationale, clinical results, and future strategies. Blood. 131:49–57. 2018. View Article : Google Scholar : PubMed/NCBI | |
Morales-Kastresana A, Sanmamed MF, Rodriguez I, Palazon A, Martinez-Forero I, Labiano S, Hervas-Stubbs S, Sangro B, Ochoa C, Rouzaut A, et al: Combined immunostimulatory monoclonal antibodies extend survival in an aggressive transgenic hepatocellular carcinoma mouse model. Clin Cancer Res. 19:6151–6162. 2013. View Article : Google Scholar : PubMed/NCBI | |
Fisher TS, Kamperschroer C, Oliphant T, Love VA, Lira PD, Doyonnas R, Bergqvist S, Baxi SM, Rohner A, Shen AC, et al: Targeting of 4-1BB by monoclonal antibody PF-05082566 enhances T-cell function and promotes anti-tumor activity. Cancer Immunol Immunother. 61:1721–1733. 2012. View Article : Google Scholar : PubMed/NCBI | |
Segal NH, He AR, Doi T, Levy R, Bhatia S, Pishvaian MJ, Cesari R, Chen Y, Davis CB, Huang B, et al: Phase I study of single-agent utomilumab (PF-05082566), a 4-1BB/CD137 agonist, in patients with advanced cancer. Clin Cancer Res. 24:1816–1823. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tolcher AW, Sznol M, Hu-Lieskovan S, Papadopoulos KP, Patnaik A, Rasco DW, Di Gravio D, Huang B, Gambhire D, Chen Y, et al: Phase Ib study of utomilumab (PF-05082566), a 4-1BB/CD137 agonist, in combination with pembrolizumab (MK-3475) in patients with advanced solid tumors. Clin Cancer Res. 23:5349–5357. 2017. View Article : Google Scholar : PubMed/NCBI | |
Masserelli E, Segal NH and Ribrag V: Clinical safety and efficacy assessment of the CD137 agonist urelumab alone and in combination with nivolumab in patients with hematologic and solid tumor malignancies. J Immunother Cancer. 4:O72016. | |
Callahan MK, Postow MA and Wolchok JD: Immunomodulatory therapy for melanoma: Ipilimumab and beyond. Clin Dermatol. 31:191–199. 2013. View Article : Google Scholar : PubMed/NCBI | |
Boutros C, Tarhini A, Routier E, Lambotte O, Ladurie FL, Carbonnel F, Izzeddine H, Marabelle A, Champiat S, Berdelou A, et al: Safety profiles of anti-CTLA-4 and anti-PD-1 antibodies alone and in combination. Nat Rev Clin Oncol. 13:473–486. 2016. View Article : Google Scholar : PubMed/NCBI | |
Postow MA, Chesney J, Pavlick AC, Robert C, Grossmann K, McDermott D, Linette GP, Meyer N, Giguere JK, Agarwala SS, et al: Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med. 372:2006–2017. 2015. View Article : Google Scholar : PubMed/NCBI | |
Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, Schadendorf D, Dummer R, Smylie M, Rutkowski P, et al: Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 373:23–34. 2015. View Article : Google Scholar : PubMed/NCBI | |
Omuro A, Vlahovic G, Lim M, Sahebjam S, Baehring J, Cloughesy T, Voloschin A, Ramkissoon SH, Ligon KL, Latek R, et al: Nivolumab with or without ipilimumab in patients with recurrent glioblastoma: Results from exploratory phase I cohorts of CheckMate 143. Neuro Oncol. 20:674–686. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kitao H, Iimori M, Kataoka Y, Wakasa T, Tokunaga E, Saeki H, Oki E and Maehara Y: DNA replication stress and cancer chemotherapy. Cancer Sci. 109:264–271. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gotwals P, Cameron S, Cipolletta D, Cremasco V, Crystal A, Hewes B, Mueller B, Quaratino S, Sabatos-Peyton C, Petruzzelli L, et al: Prospects for combining targeted and conventional cancer therapy with immunotherapy. Nat Rev Cancer. 17:286–301. 2017. View Article : Google Scholar : PubMed/NCBI | |
Langer CJ, Gadgeel SM, Borghaei H, Papadimitrakopoulou VA, Patnaik A, Powell SF, Gentzler RD, Martins RG, Stevenson JP, Jalal SI, et al: Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: A randomised, phase 2 cohort of the open-label KEYNOTE-021 study. Lancet Oncol. 17:1497–1508. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gandhi L, Rodríguez-Abreu D, Gadgeel S, Esteban E, Felip E, De Angelis F, Domine M, Clingan P, Hochmair MJ, Powell SF, et al: Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med. 378:2078–2092. 2018. View Article : Google Scholar : PubMed/NCBI | |
Paz-Ares L, Luft A, Vicente D, Tafreshi A, Gümüş M, Mazières J, Hermes B, Çay Şenler F, Csőszi T, Fülöp A, et al: Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N Engl J Med. 379:2040–2051. 2018. View Article : Google Scholar : PubMed/NCBI | |
Deng L, Liang H, Burnette B, Beckett M, Darga T, Weichselbaum RR and Fu YX: Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Invest. 124:687–695. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lhuillier C, Rudqvist NP, Elemento O, Formenti SC and Demaria S: Radiation therapy and anti-tumor immunity: Exposing immunogenic mutations to the immune system. Genome Med. 11:402019. View Article : Google Scholar : PubMed/NCBI | |
Chen D, Barsoumian HB, Yang L, Younes AI, Verma V, Hu Y, Menon H, Wasley M, Masropour F, Mosaffa S, et al: SHP-2 and PD-L1 inhibition combined with radiotherapy enhances systemic antitumor effects in an anti-PD-1-resistant model of non-small cell lung cancer. Cancer Immunol Res. 8:883–894. 2020. View Article : Google Scholar : PubMed/NCBI | |
Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, Yokoi T, Chiappori A, Lee KH, de Wit M, et al: Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N Engl J Med. 377:1919–1929. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sharabi AB, Nirschl CJ, Kochel CM, Nirschl TR, Francica BJ, Velarde E, Deweese TL and Drake CG: Stereotactic radiation therapy augments antigen-specific PD-1-mediated antitumor immune responses via cross-presentation of tumor antigen. Cancer Immunol Res. 3:345–355. 2015. View Article : Google Scholar : PubMed/NCBI | |
Dudzinski SO, Cameron BD, Wang J, Rathmell JC, Giorgio TD and Kirschner AN: Combination immunotherapy and radiotherapy causes an abscopal treatment response in a mouse model of castration resistant prostate cancer. J Immunother Cancer. 7:2182019. View Article : Google Scholar : PubMed/NCBI | |
Dovedi SJ, Adlard AL, Lipowska-Bhalla G, McKenna C, Jones S, Cheadle EJ, Stratford IJ, Poon E, Morrow M, Stewart R, et al: Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade. Cancer Res. 74:5458–5468. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ahmed KA, Stallworth DG, Kim Y, Johnstone PA, Harrison LB, Caudell JJ, Yu HH, Etame AB, Weber JS and Gibney GT: Clinical outcomes of melanoma brain metastases treated with stereotactic radiation and anti-PD-1 therapy. Ann Oncol. 27:434–441. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chowdhury PS, Chamoto K and Honjo T: Combination therapy strategies for improving PD-1 blockade efficacy: A new era in cancer immunotherapy. J Intern Med. 283:110–120. 2018. View Article : Google Scholar : PubMed/NCBI | |
Formenti SC and Demaria S: Radiation therapy to convert the tumor into an in situ vaccine. Int J Radiat Oncol Biol Phys. 84:879–880. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liang H, Deng L, Hou Y, Meng X, Huang X, Rao E, Zheng W, Mauceri H, Mack M, Xu M, et al: Host STING-dependent MDSC mobilization drives extrinsic radiation resistance. Nat Commun. 8:17362017. View Article : Google Scholar : PubMed/NCBI | |
Seyedin SN, Hasibuzzaman MM, Pham V, Petronek MS, Callaghan C, Kalen AL, Mapuskar KA, Mott SL, Spitz DR, Allen BG and Caster JM: Combination therapy with radiation and PARP inhibition enhances responsiveness to anti-PD-1 therapy in colorectal tumor models. Int J Radiat Oncol Biol Phys. 108:81–92. 2020. View Article : Google Scholar : PubMed/NCBI | |
Theelen WSME, Peulen HMU, Lalezari F, van der Noort V, de Vries JF, Aerts JGJV, Dumoulin DW, Bahce I, Niemeijer AN, de Langen AJ, et al: Effect of pembrolizumab after stereotactic body radiotherapy vs pembrolizumab alone on tumor response in patients with advanced non-small cell lung cancer: Results of the PEMBRO-RT phase 2 randomized clinical trial. JAMA Oncol. 5:1276–1282. 2019. View Article : Google Scholar | |
Arina A, Gutiontov SI and Weichselbaum RR: Radiotherapy and immunotherapy for cancer: From ‘systemic; to ‘multisite’. Clin Cancer Res. 26:2777–2782. 2020. View Article : Google Scholar : PubMed/NCBI | |
Vanpouille-Box C, Alard A, Aryankalayil MJ, Sarfraz Y, Diamond JM, Schneider RJ, Inghirami G, Coleman CN, Formenti SC and Demaria S: DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat Commun. 8:156182017. View Article : Google Scholar : PubMed/NCBI | |
Lugade AA, Moran JP, Gerber SA, Rose RC, Frelinger JG and Lord EM: Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. J Immunol. 174:7516–7523. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kordbacheh T, Honeychurch J, Blackhall F, Faivre-Finn C and Illidge T: Radiotherapy and anti-PD-1/PD-L1 combinations in lung cancer: Building better translational research platforms. Ann Oncol. 29:301–310. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, Benyamin FW, Lei YM, Jabri B, Alegre ML, et al: Commensal bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 350:1084–1089. 2015. View Article : Google Scholar : PubMed/NCBI | |
Song P, Yang D, Wang H, Cui X, Si X, Zhang X and Zhang L: Relationship between intestinal flora structure and metabolite analysis and immunotherapy efficacy in Chinese NSCLC patients. Thorac Cancer. 11:1621–1632. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tanoue T, Morita S, Plichta DR, Skelly AN, Suda W, Sugiura Y, Narushima S, Vlamakis H, Motoo I, Sugita K, et al: A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature. 565:600–605. 2019. View Article : Google Scholar : PubMed/NCBI | |
Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillère R, Fluckiger A, Messaoudene M, Rauber C, Roberti MP, et al: Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 359:91–97. 2018. View Article : Google Scholar : PubMed/NCBI | |
Baruch EN, Youngster I, Ben-Betzalel G, Ortenberg R, Lahat A, Katz L, Adler K, Dick-Necula D, Raskin S, Bloch N, et al: Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science. 371:602–609. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kikuchi T, Mimura K, Ashizawa M, Okayama H, Endo E, Saito K, Sakamoto W, Fujita S, Endo H, Saito M, et al: Characterization of tumor-infiltrating immune cells in relation to microbiota in colorectal cancers. Cancer Immunol Immunother. 69:23–32. 2020. View Article : Google Scholar : PubMed/NCBI | |
Dubin K, Callahan MK, Ren B, Khanin R, Viale A, Ling L, No D, Gobourne A, Littmann E, Huttenhower C, et al: Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nat Commun. 7:103912016. View Article : Google Scholar : PubMed/NCBI | |
Xu X, Lv J, Guo F, Li J, Jia Y, Jiang D, Wang N, Zhang C, Kong L, Liu Y, et al: Gut microbiome influences the efficacy of PD-1 antibody immunotherapy on MSS-type colorectal cancer via metabolic pathway. Front Microbiol. 11:8142020. View Article : Google Scholar : PubMed/NCBI | |
Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, Prieto PA, Vicente D, Hoffman K, Wei SC, et al: Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 359:97–103. 2018. View Article : Google Scholar : PubMed/NCBI | |
Frankel AE, Coughlin LA, Kim J, Froehlich TW, Xie Y, Frenkel EP and Koh AY: Metagenomic shotgun sequencing and unbiased metabolomic profiling identify specific human gut microbiota and metabolites associated with immune checkpoint therapy efficacy in melanoma patients. Neoplasia. 19:848–855. 2017. View Article : Google Scholar : PubMed/NCBI | |
Matson V, Fessler J, Bao R, Chongsuwat T, Zha Y, Alegre ML, Luke JJ and Gajewski TF: The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science. 359:104–108. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sethi G, Shanmugam MK, Warrier S, Merarchi M, Arfuso F, Kumar AP and Bishayee A: Pro-apoptotic and anti-cancer properties of diosgenin: A comprehensive and critical review. Nutrients. 10:6452018. View Article : Google Scholar | |
Dong M, Meng Z, Kuerban K, Qi F, Liu J, Wei Y, Wang Q, Jiang S, Feng M and Ye L: Diosgenin promotes antitumor immunity and PD-1 antibody efficacy against melanoma by regulating intestinal microbiota. Cell Death Dis. 9:10392018. View Article : Google Scholar : PubMed/NCBI | |
Hao H, Zhang Q, Zhu H, Wen Y, Qiu D, Xiong J, Fu X, Wu Y, Meng K and Li J: Icaritin promotes tumor T-cell infiltration and induces antitumor immunity in mice. Eur J Immunol. 49:2235–2244. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li W, Kim TI, Kim JH and Chung HS: Immune checkpoint PD-1/PD-L1 CTLA-4/CD80 are blocked by Rhus verniciflua stokes and its active compounds. Molecules. 24:40622019. View Article : Google Scholar | |
Wang G, Wang L, Zhou J and Xu X: The possible Role of PD-1 protein in Ganoderma lucidum-mediated immunomodulation and cancer treatment. Integr Cancer Ther. 18:15347354198802752019. View Article : Google Scholar : PubMed/NCBI | |
Su J, Li D, Chen Q, Li M, Su L, Luo T, Liang D, Lai G, Shuai O, Jiao C, et al: Anti-breast cancer enhancement of a polysaccharide from spore of Ganoderma lucidum with paclitaxel: Suppression on tumor metabolism with gut microbiota reshaping. Front Microbiol. 9:30992018. View Article : Google Scholar : PubMed/NCBI | |
Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, Sosman JA, McDermott DF, Powderly JD, Gettinger SN, et al: Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 515:563–567. 2014. View Article : Google Scholar : PubMed/NCBI | |
Taube JM, Klein A, Brahmer JR, Xu H, Pan X, Kim JH, Chen L, Pardoll DM, Topalian SL and Anders RA: Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res. 20:5064–5074. 2014. View Article : Google Scholar : PubMed/NCBI | |
Taube JM, Anders RA, Young GD, Xu H, Sharma R, McMiller TL, Chen S, Klein AP, Pardoll DM, Topalian SL and Chen L: Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med. 4:127ra372012. View Article : Google Scholar : PubMed/NCBI | |
Madore J, Vilain RE, Menzies AM, Kakavand H, Wilmott JS, Hyman J, Yearley JH, Kefford RF, Thompson JF, Long GV, et al: PD-L1 expression in melanoma shows marked heterogeneity within and between patients: Implications for anti-PD-1/PD-L1 clinical trials. Pigment Cell Melanoma Res. 28:245–253. 2015. View Article : Google Scholar : PubMed/NCBI | |
Adams DL, Adams DK, He J, Kalhor N, Zhang M, Xu T, Gao H, Reuben JM, Qiao Y, Komaki R, et al: Sequential tracking of PD-L1 expression and RAD50 induction in circulating tumor and stromal cells of lung cancer patients undergoing radiotherapy. Clin Cancer Res. 23:5948–5958. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hansen AR and Siu LL: PD-L1 testing in cancer: Challenges in companion diagnostic development. JAMA Oncol. 2:15–16. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sacher AG and Gandhi L: Biomarkers for the clinical use of PD-1/PD-L1 inhibitors in non-small-cell lung cancer: A review. JAMA Oncol. 2:1217–1222. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mahoney KM, Sun H, Liao X, Hua P, Callea M, Greenfield EA, Hodi FS, Sharpe AH, Signoretti S, Rodig SJ and Freeman GJ: PD-L1 antibodies to its cytoplasmic domain most clearly delineate cell membranes in immunohistochemical staining of tumor cells. Cancer Immunol Res. 3:1308–1315. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ahmadzadeh M, Johnson LA, Heemskerk B, Wunderlich JR, Dudley ME, White DE and Rosenberg SA: Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood. 114:1537–1544. 2009. View Article : Google Scholar : PubMed/NCBI | |
Honda Y, Otsuka A, Ono S, Yamamoto Y, Seidel JA, Morita S, Hirata M, Kataoka TR, Takenouchi T, Fujii K, et al: Infiltration of PD-1-positive cells in combination with tumor site PD-L1 expression is a positive prognostic factor in cutaneous angiosarcoma. Oncoimmunology. 6:e12536572016. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Kang S, Shen J, He J, Jiang L, Wang W, Guo Z, Peng G, Chen G, He J and Liang W: Prognostic significance of programmed cell death 1 (PD-1) or PD-1 ligand 1 (PD-L1) Expression in epithelial-originated cancer: A meta-analysis. Medicine (Baltimore). 94:e5152015. View Article : Google Scholar : PubMed/NCBI | |
Stanton SE and Disis ML: Clinical significance of tumor-infiltrating lymphocytes in breast cancer. J Immunother Cancer. 4:592016. View Article : Google Scholar : PubMed/NCBI | |
Kawakami F, Sircar K, Rodriguez-Canales J, Fellman BM, Urbauer DL, Tamboli P, Tannir NM, Jonasch E, Wistuba II, Wood CG and Karam JA: Programmed cell death ligand 1 and tumor-infiltrating lymphocyte status in patients with renal cell carcinoma and sarcomatoid dedifferentiation. Cancer. 123:4823–4831. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y and Chen L: Classification of advanced human cancers based on tumor immunity in the microenvironment (TIME) for cancer immunotherapy. JAMA Oncol. 2:1403–1404. 2016. View Article : Google Scholar : PubMed/NCBI | |
De Ruysscher D: Combination of radiotherapy and immune treatment: First clinical data. Cancer Radiother. 22:564–566. 2018. View Article : Google Scholar : PubMed/NCBI | |
Vansteenkiste J, Wauters E, Reymen B, Ackermann CJ, Peters S and De Ruysscher D: Current status of immune checkpoint inhibition in early-stage NSCLC. Ann Oncol. 30:1244–1253. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sahin IH, Akce M, Alese O, Shaib W, Lesinski GB, El-Rayes B and Wu C: Immune checkpoint inhibitors for the treatment of MSI-H/MMR-D colorectal cancer and a perspective on resistance mechanisms. Br J Cancer. 121:809–818. 2019. View Article : Google Scholar : PubMed/NCBI | |
Narayanan S, Kawaguchi T, Peng X, Qi Q, Liu S, Yan L and Takabe K: Tumor infiltrating lymphocytes and macrophages improve survival in microsatellite unstable colorectal cancer. Sci Rep. 9:134552019. View Article : Google Scholar : PubMed/NCBI | |
Diaz LA Jr and Le DT: PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 373:19792015. View Article : Google Scholar : PubMed/NCBI | |
Wang X and Li M: Correlate tumor mutation burden with immune signatures in human cancers. BMC Immunol. 20:42019. View Article : Google Scholar : PubMed/NCBI | |
Rizvi H, Sanchez-Vega F, La K, Chatila W, Jonsson P, Halpenny D, Plodkowski A, Long N, Sauter JL, Rekhtman N, et al: Molecular determinants of response to anti-programmed cell death (PD)-1 and anti-programmed death-ligand 1 (PD-L1) blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing. J Clin Oncol. 36:633–641. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen D, Barsoumian HB, Fischer G, Yang L, Verma V, Younes AI, Hu Y, Masropour F, Klein K, Vellano C, et al: Combination treatment with radiotherapy and a novel oxidative phosphorylation inhibitor overcomes PD-1 resistance and enhances antitumor immunity. J Immunother Cancer. 8:e0002892020. View Article : Google Scholar : PubMed/NCBI | |
Wolchok JD, Chiarion-Sileni V, Gonzalez R, Rutkowski P, Grob JJ, Cowey CL, Lao CD, Wagstaff J, Schadendorf D, Ferrucci PF, et al: Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 377:1345–1356. 2017. View Article : Google Scholar : PubMed/NCBI | |
Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, Daud A, Carlino MS, McNeil C, Lotem M, et al: Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 372:2521–2532. 2015. View Article : Google Scholar : PubMed/NCBI | |
Abdel-Rahman O and Fouad M: A network meta-analysis of the risk of immune-related renal toxicity in cancer patients treated with immune checkpoint inhibitors. Immunotherapy. 8:665–674. 2016. View Article : Google Scholar : PubMed/NCBI | |
Freeman-Keller M, Kim Y, Cronin H, Richards A, Gibney G and Weber JS: Nivolumab in resected and unresectable metastatic melanoma: Characteristics of immune-related adverse events and association with outcomes. Clin Cancer Res. 22:886–894. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sun J, Lu Q, Sanmanmed MF and Wang J: Siglec-15 as an emerging target for next-generation cancer immunotherapy. Clin Cancer Res. 27:680–688. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jiang L, Gong X, Liao W, Lv N and Yan R: Molecular targeted treatment and drug delivery system for gastric cancer. J Cancer Res Clin Oncol. Feb 7–2021.(Epub ahead of print). View Article : Google Scholar | |
Schoenfeld AJ, Arbour KC, Rizvi H, Iqbal AN, Gadgeel SM, Girshman J, Kris MG, Riely GJ, Yu HA and Hellmann MD: Severe immune-related adverse events are common with sequential PD-(L)1 blockade and osimertinib. Ann Oncol. 30:839–844. 2019. View Article : Google Scholar : PubMed/NCBI | |
Uchida T, Kaira K, Yamaguchi O, Mouri A, Shiono A, Miura Y, Hashimoto K, Nishihara F, Murayama Y, Kobayashi K and Kagamu H: Different incidence of interstitial lung disease according to different kinds of EGFR-tyrosine kinase inhibitors administered immediately before and/or after anti-PD-1 antibodies in lung cancer. Thorac Cancer. 10:975–979. 2019. View Article : Google Scholar : PubMed/NCBI | |
Burtness B, Harrington KJ, Greil R, Soulieres D, Tahara M, de Castro Junior G, Psyrri A, Rotllan NB, Neupane PC, Bratland Å, et al: LBA8_PRKEYNOTE-048: phase III study of first-line pembrolizumab (P) for recurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC). Ann Oncol. 29 (Suppl 8):viii7292018. View Article : Google Scholar | |
Sasaki A, Nakamura Y, Togashi Y, Kuno H, Hojo H, Kageyama S, Nakamura N, Takashima K, Kadota T, Yoda Y, et al: Enhanced tumor response to radiotherapy after PD-1 blockade in metastatic gastric cancer. Gastric Cancer. 23:893–903. 2020. View Article : Google Scholar : PubMed/NCBI | |
Samuel E, Lie G, Balasubramanian A, Hiong A, So Y, Voskoboynik M, Moore M, Shackleton M, Haydon A, John T, et al: Impact of radiotherapy on the efficacy and toxicity of anti-PD-1 inhibitors in metastatic NSCLC. Clin Lung Cancer. S1525-7304:30183–30192. 2020.(Epub ahead of print). |