Interaction of non‑parenchymal hepatocytes in the process of hepatic fibrosis (Review)
- Authors:
- Qi-Ni Cheng
- Xue Yang
- Jiang-Feng Wu
- Wen-Bing Ai
- Yi-Ran Ni
-
Affiliations: Medical College, China Three Gorges University, Yichang, Hubei 443002, P.R. China, The Yiling Hospital of Yichang, Yichang, Hubei 443100, P.R. China - Published online on: March 16, 2021 https://doi.org/10.3892/mmr.2021.12003
- Article Number: 364
-
Copyright: © Cheng et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Aydin MM and Akcali KC: Liver fibrosis. Turk J Gastroenterol. 29:14–21. 2018. View Article : Google Scholar : PubMed/NCBI | |
Greuter T and Shah VH: Hepatic sinusoids in liver injury, inflammation, and fibrosis: New pathophysiological insights. J Gastroenterol. 51:511–519. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Hu H and Yin JQ: Therapeutic strategies against TGF-beta signaling pathway in hepatic fibrosis. Liver Int. 26:8–22. 2006. View Article : Google Scholar : PubMed/NCBI | |
Higashi T, Friedman SL and Hoshida Y: Hepatic stellate cells as key target in liver fibrosis. Adv Drug Deliv Rev. 121:27–42. 2017. View Article : Google Scholar : PubMed/NCBI | |
Marrone G, Shah VH and Gracia-Sancho J: Sinusoidal communication in liver fibrosis and regeneration. J Hepatol. 65:608–617. 2016. View Article : Google Scholar : PubMed/NCBI | |
Klenerman P and Ramamurthy N: Liver sinusoidal endothelial cells: An antiviral ‘defendothelium’. Gastroenterology. 148:288–291. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ray K: Liver: Hepatic stellate cells hold the key to liver fibrosis. Nat Rev Gastroenterol Hepatol. 11:742014. View Article : Google Scholar : PubMed/NCBI | |
Poisson J, Lemoinne S, Boulanger C, Durand F, Moreau R, Valla D and Rautou PE: Liver sinusoidal endothelial cells: Physiology and role in liver diseases. J Hepatol. 66:212–227. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shetty S, Lalor PF and Adams DH: Liver sinusoidal endothelial cells-gatekeepers of hepatic immunity. Nat Rev Gastroenterol Hepatol. 15:555–567. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sorensen KK, Simon-Santamaria J, McCuskey RS and Smedsrod B: Liver Sinusoidal Endothelial Cells. Compr Physiol. 5:1751–1774. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ni Y, Li JM, Liu MK, Zhang TT, Wang DP, Zhou WH, Hu LZ and Lv WL: Pathological process of liver sinusoidal endothelial cells in liver diseases. World J Gastroenterol. 23:7666–7677. 2017. View Article : Google Scholar : PubMed/NCBI | |
Friedman SL: Hepatic stellate cells: Protean, multifunctional, and enigmatic cells of the liver. Physiol Rev. 88:125–172. 2008. View Article : Google Scholar : PubMed/NCBI | |
Dixon LJ, Barnes M, Tang H, Pritchard MT and Nagy LE: Kupffer cells in the liver. Compr Physiol. 3:785–797. 2013.PubMed/NCBI | |
Dou L, Shi X, He X and Gao Y: Macrophage phenotype and function in liver disorder. Front Immunol. 10:31122019. View Article : Google Scholar : PubMed/NCBI | |
Liu HL, Lv J, Zhao ZM, Xiong AM, Tan Y, Glenn JS, Tao YY, Weng HL and Liu CH: Fuzhenghuayu decoction ameliorates hepatic fibrosis by attenuating experimental sinusoidal capillarization and liver angiogenesis. Sci Rep. 9:187192019. View Article : Google Scholar : PubMed/NCBI | |
Brusilovskaya K, Konigshofer P, Schwabl P and Reiberger T: Vascular targets for the treatment of portal hypertension. Semin Liver Dis. 39:483–501. 2019. View Article : Google Scholar : PubMed/NCBI | |
DeLeve LD: Liver sinusoidal endothelial cells in hepatic fibrosis. Hepatology. 61:1740–1746. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tuohetahuntila M, Molenaar MR, Spee B, Brouwers JF, Wubbolts R, Houweling M, Yan C, Du H, VanderVen BC, Vaandrager AB and Helms JB: Lysosome-mediated degradation of a distinct pool of lipid droplets during hepatic stellate cell activation. J Biol Chem. 292:12436–12448. 2017. View Article : Google Scholar : PubMed/NCBI | |
Peterova E, Podmolikova L, Rezacova M and Mrkvicova A: Fibroblast growth Factor-1 suppresses TGF-β-mediated myofibroblastic differentiation of rat hepatic stellate cells. Acta Medica (Hradec Kralove). 59:124–132. 2016. View Article : Google Scholar : PubMed/NCBI | |
Schon HT, Bartneck M, Borkham-Kamphorst E, Nattermann J, Lammers T, Tacke F and Weiskirchen R: Pharmacological intervention in hepatic stellate cell activation and hepatic fibrosis. Front Pharmacol. 7:332016. View Article : Google Scholar : PubMed/NCBI | |
Ezhilarasan D, Sokal E and Najimi M: Hepatic fibrosis: It is time to go with hepatic stellate cell-specific therapeutic targets. Hepatobiliary Pancreat Dis Int. 17:192–197. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cai X, Wang J, Wang J, Zhou Q, Yang B, He Q and Weng Q: Intercellular crosstalk of hepatic stellate cells in liver fibrosis: New insights into therapy. Pharmacol Res. 155:1047202020. View Article : Google Scholar : PubMed/NCBI | |
Ramirez-Pedraza M and Fernandez M: Interplay between macrophages and angiogenesis: A double-edged sword in liver disease. Front Immunol. 10:28822019. View Article : Google Scholar : PubMed/NCBI | |
Lafoz E, Ruart M, Anton A, Oncins A and Hernández-Gea V: The endothelium as a driver of liver fibrosis and regeneration. Cells. 9:9292020. View Article : Google Scholar | |
Soydemir S, Comella O, Abdelmottaleb D and Pritchett J: Does mechanocrine signaling by liver sinusoidal endothelial cells offer new opportunities for the development of anti-fibrotics? Front Med (Lausanne). 6:3122019. View Article : Google Scholar : PubMed/NCBI | |
Kaur S and Anita K: Angiogenesis in liver regeneration and fibrosis: ‘A double-edged sword’. Hepatol Int. 7:959–968. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wells RG: Cellular sources of extracellular matrix in hepatic fibrosis. Clin Liver Dis. 12:759–768. 2008. View Article : Google Scholar : PubMed/NCBI | |
Maher JJ and McGuire RF: Extracellular matrix gene expression increases preferentially in rat lipocytes and sinusoidal endothelial cells during hepatic fibrosis in vivo. J Clin Invest. 86:1641–1648. 1990. View Article : Google Scholar : PubMed/NCBI | |
Yu F, Dong B, Dong P, He Y, Zheng J and Xu P: Hypoxia induces the activation of hepatic stellate cells through the PVT1-miR-152-ATG14 signaling pathway. Mol Cell Biochem. 465:115–123. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shi YF, Fong CC, Zhang Q, Cheung PY, Tzang CH, Wu RS and Yang M: Hypoxia induces the activation of human hepatic stellate cells LX-2 through TGF-beta signaling pathway. FEBS Lett. 581:203–210. 2007. View Article : Google Scholar : PubMed/NCBI | |
Jin Y, Bai Y, Ni H, Qiang L, Ye L, Shan Y and Zhou M: Activation of autophagy through calcium-dependent AMPK/mTOR and PKCθ pathway causes activation of rat hepatic stellate cells under hypoxic stress. FEBS Lett. 590:672–682. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen W, Rock JB, Yearsley MM, Ferrell LD and Frankel WL: Different collagen types show distinct rates of increase from early to late stages of hepatitis C-related liver fibrosis. Hum Pathol. 45:160–165. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ghafoory S, Varshney R, Robison T, Kouzbari K, Woolington S, Murphy B, Xia L and Ahamed J: Platelet TGF-β1 deficiency decreases liver fibrosis in a mouse model of liver injury. Blood Adv. 2:470–480. 2018. View Article : Google Scholar : PubMed/NCBI | |
Baghy K, Iozzo RV and Kovalszky I: Decorin-TGFβ axis in hepatic fibrosis and cirrhosis. J Histochem Cytochem. 60:262–268. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hayes BJ, Riehle KJ, Shimizu-Albergine M, Bauer RL, Hudkins KL, Johansson F, Yeh MM, Mahoney WJ, Yeung RS and Campbell JS: Activation of platelet-derived growth factor receptor alpha contributes to liver fibrosis. PLoS One. 9:e929252014. View Article : Google Scholar : PubMed/NCBI | |
Ying HZ, Chen Q, Zhang WY, Zhang HH, Ma Y, Zhang SZ, Fang J and Yu CH: PDGF signaling pathway in hepatic fibrosis pathogenesis and therapeutics (Review). Mol Med Rep. 16:7879–7889. 2017. View Article : Google Scholar : PubMed/NCBI | |
Borkham-Kamphorst E and Weiskirchen R: The PDGF system and its antagonists in liver fibrosis. Cytokine Growth Factor Rev. 28:53–61. 2016. View Article : Google Scholar : PubMed/NCBI | |
Borkham-Kamphorst E, Meurer SK, Van de Leur E, Haas U, Tihaa L and Weiskirchen R: PDGF-D signaling in portal myofibroblasts and hepatic stellate cells proves identical to PDGF-B via both PDGF receptor type alpha and β. Cell Signal. 27:1305–1314. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kocabayoglu P, Lade A, Lee YA, Dragomir A, Sun X, Fiel MI, Thung S, Aloman C, Soriano P, Hoshida Y and Friedman SL: β-PDGF receptor expressed by hepatic stellate cells regulates fibrosis in murine liver injury, but not carcinogenesis. J Hepatol. 63:141–147. 2015. View Article : Google Scholar : PubMed/NCBI | |
Thabut D and Shah V: Intrahepatic angiogenesis and sinusoidal remodeling in chronic liver disease: New targets for the treatment of portal hypertension? J Hepatol. 53:976–980. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lim BJ, Lee WK, Lee HW, Lee KS, Kim JK, Chang HY and Lee JI: Selective deletion of hepatocyte platelet-derived growth factor receptor α and development of liver fibrosis in mice. Cell Commun Signal. 16:932018. View Article : Google Scholar : PubMed/NCBI | |
Serini G, Bochaton-Piallat ML, Ropraz P, Geinoz A, Borsi L, Zardi L and Gabbiani G: The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-beta1. J Cell Biol. 142:873–881. 1998. View Article : Google Scholar : PubMed/NCBI | |
Gabbiani G: The myofibroblast in wound healing and fibrocontractive diseases. J Pathol. 200:500–503. 2003. View Article : Google Scholar : PubMed/NCBI | |
Bocca C, Novo E, Miglietta A and Parola M: Angiogenesis and Fibrogenesis in chronic liver diseases. Cell Mol Gastroenterol Hepatol. 1:477–488. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kardum D, Fabijanic D, Lukic A, Romic Z, Petrovecki M, Bogdanovic Z, Juric K, Urek-Crncevic M and Banic M: Correlation of endothelin-1 concentration and angiotensin-converting enzyme activity with the staging of liver fibrosis. Coll Antropol. 36:413–418. 2012.PubMed/NCBI | |
Yokomori H, Oda M, Ogi M, Kamegaya Y, Tsukada N, Nakamura M and Ishii H: Enhanced expression of endothelin receptor subtypes in cirrhotic rat liver. Liver. 21:114–122. 2001. View Article : Google Scholar : PubMed/NCBI | |
Koda M, Bauer M, Krebs A, Hahn EG, Schuppan D and Murawaki Y: Endothelin-1 enhances fibrogenic gene expression, but does not promote DNA synthesis or apoptosis in hepatic stellate cells. Comp Hepatol. 5:52006. View Article : Google Scholar : PubMed/NCBI | |
Pinzani M, Milani S, De Franco R, Grappone C, Caligiuri A, Gentilini A, Tosti-Guerra C, Maggi M, Failli P, Ruocco C and Gentilini P: Endothelin 1 is overexpressed in human cirrhotic liver and exerts multiple effects on activated hepatic stellate cells. Gastroenterology. 110:534–548. 1996. View Article : Google Scholar : PubMed/NCBI | |
Das A, Shergill U, Thakur L, Sinha S, Urrutia R, Mukhopadhyay D and Shah VH: Ephrin B2/EphB4 pathway in hepatic stellate cells stimulates Erk-dependent VEGF production and sinusoidal endothelial cell recruitment. Am J Physiol Gastrointest Liver Physiol. 298:G908–G915. 2010. View Article : Google Scholar : PubMed/NCBI | |
Li G, Peng Y, Zhao T, Lin J, Duan X, Wei Y and Ma J: Plumbagin alleviates capillarization of hepatic sinusoids in vitro by downregulating ET-1, VEGF, LN, and type IV collagen. Biomed Res Int. 2017:56032162017.PubMed/NCBI | |
Lee JS, Semela D, Iredale J and Shah VH: Sinusoidal remodeling and angiogenesis: A new function for the liver-specific pericyte? Hepatology. 45:817–825. 2007. View Article : Google Scholar : PubMed/NCBI | |
Rockey DC: Hepatic blood flow regulation by stellate cells in normal and injured liver. Semin Liver Dis. 21:337–349. 2001. View Article : Google Scholar : PubMed/NCBI | |
Henderson NC and Iredale JP: Liver fibrosis: Cellular mechanisms of progression and resolution. Clin Sci (Lond). 112:265–280. 2007. View Article : Google Scholar : PubMed/NCBI | |
Knittel T, Mehde M, Kobold D, Saile B, Dinter C and Ramadori G: Expression patterns of matrix metalloproteinases and their inhibitors in parenchymal and non-parenchymal cells of rat liver: Regulation by TNF-alpha and TGF-beta1. J Hepatol. 30:48–60. 1999. View Article : Google Scholar : PubMed/NCBI | |
Liu T, Xu L, Wang C, Chen K, Xia Y, Li J, Li S, Wu L, Feng J, Xu S, et al: Alleviation of hepatic fibrosis and autophagy via inhibition of transforming growth factor-β1/Smads pathway through shikonin. J Gastroenterol Hepatol. 34:263–276. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gupta G, Khadem F and Uzonna JE: Role of hepatic stellate cell (HSC)-derived cytokines in hepatic inflammation and immunity. Cytokine. 124:1545422019. View Article : Google Scholar : PubMed/NCBI | |
Marchand M, Monnot C, Muller L and Germain S: Extracellular matrix scaffolding in angiogenesis and capillary homeostasis. Semin Cell Dev Biol. 89:147–156. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mokkapati S, Fleger-Weckmann A, Bechtel M, Koch M, Breitkreutz D, Mayer U, Smyth N and Nischt R: Basement membrane deposition of nidogen 1 but not nidogen 2 requires the nidogen binding module of the laminin gamma1 chain. J Biol Chem. 286:1911–1918. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mak KM and Mei R: Basement membrane type IV collagen and laminin: An overview of their biology and value as fibrosis biomarkers of liver disease. Anat Rec (Hoboken). 300:1371–1390. 2017. View Article : Google Scholar : PubMed/NCBI | |
McGuire RF, Bissell DM, Boyles J and Roll FJ: Role of extracellular matrix in regulating fenestrations of sinusoidal endothelial cells isolated from normal rat liver. Hepatology. 15:989–997. 1992. View Article : Google Scholar : PubMed/NCBI | |
Braet F and Wisse E: Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: A review. Comp Hepatol. 1:12002. View Article : Google Scholar : PubMed/NCBI | |
Natarajan V, Harris EN and Kidambi S: SECs (Sinusoidal Endothelial Cells), liver microenvironment, and fibrosis. Biomed Res Int. 2017:40972052017. View Article : Google Scholar : PubMed/NCBI | |
DeLeve LD, Wang X, Hu L, McCuskey MK and McCuskey RS: Rat liver sinusoidal endothelial cell phenotype is maintained by paracrine and autocrine regulation. Am J Physiol Gastrointest Liver Physiol. 287:G757–G763. 2004. View Article : Google Scholar : PubMed/NCBI | |
Desroches-Castan A, Tillet E, Ricard N, Ouarne M, Mallet C, Belmudes L, Coute Y, Boillot O, Scoazec JY, Bailly S and Feige JJ: Bone morphogenetic protein 9 is a paracrine factor controlling liver sinusoidal endothelial cell fenestration and protecting against hepatic fibrosis. Hepatology. 70:1392–1408. 2019. View Article : Google Scholar : PubMed/NCBI | |
Soon RJ and Yee HJ: Stellate cell contraction: Role, regulation, and potential therapeutic target. Clin Liver Dis. 12:791–803. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hintermann E, Bayer M, Ehser J, Aurrand-Lions M, Pfeilschifter JM, Imhof BA and Christen U: Murine junctional adhesion molecules JAM-B and JAM-C mediate endothelial and stellate cell interactions during hepatic fibrosis. Cell Adh Migr. 10:419–433. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hintermann E, Bayer M, Conti CB, Fuchs S, Fausther M, Leung PS, Aurrand-Lions M, Taubert R, Pfeilschifter JM, Friedrich-Rust M, et al: Junctional adhesion molecules JAM-B and JAM-C promote autoimmune-mediated liver fibrosis in mice. J Autoimmun. 91:83–96. 2018. View Article : Google Scholar : PubMed/NCBI | |
Saiman Y, Agarwal R, Hickman DA, Fausther M, El-Shamy A, Dranoff JA, Friedman SL and Bansal MB: CXCL12 induces hepatic stellate cell contraction through a calcium-independent pathway. Am J Physiol Gastrointest Liver Physiol. 305:G375–G382. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sohail MA, Hashmi AZ, Hakim W, Watanabe A, Zipprich A, Groszmann RJ, Dranoff JA, Torok NJ and Mehal WZ: Adenosine induces loss of actin stress fibers and inhibits contraction in hepatic stellate cells via Rho inhibition. Hepatology. 49:185–194. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Zhang F, Lu Y and Zheng S: Update on implications and mechanisms of angiogenesis in liver fibrosis. Hepatol Res. 45:162–178. 2015. View Article : Google Scholar : PubMed/NCBI | |
Budny T, Palmes D, Stratmann U, Minin E, Herbst H and Spiegel HU: Morphologic features in the regenerating liver-a comparative intravital, lightmicroscopical and ultrastructural analysis with focus on hepatic stellate cells. Virchows Arch. 451:781–791. 2007. View Article : Google Scholar : PubMed/NCBI | |
Coulon S, Heindryckx F, Geerts A, Van Steenkiste C, Colle I and Van Vlierberghe H: Angiogenesis in chronic liver disease and its complications. Liver Int. 31:146–162. 2011. View Article : Google Scholar : PubMed/NCBI | |
Karkkainen MJ and Petrova TV: Vascular endothelial growth factor receptors in the regulation of angiogenesis and lymphangiogenesis. Oncogene. 19:5598–5605. 2000. View Article : Google Scholar : PubMed/NCBI | |
Xie G, Wang X, Wang L, Wang L, Atkinson RD, Kanel GC, Gaarde WA and Deleve LD: Role of differentiation of liver sinusoidal endothelial cells in progression and regression of hepatic fibrosis in rats. Gastroenterology. 142:918–927. 2012. View Article : Google Scholar : PubMed/NCBI | |
Deleve LD, Wang X and Guo Y: Sinusoidal endothelial cells prevent rat stellate cell activation and promote reversion to quiescence. Hepatology. 48:920–930. 2008. View Article : Google Scholar : PubMed/NCBI | |
Li X, Yao Q, Liu H, Jin Q, Xu B, Zhang S and Tu C: Placental growth factor silencing ameliorates liver fibrosis and angiogenesis and inhibits activation of hepatic stellate cells in a murine model of chronic liver disease. J Cell Mol Med. 21:2370–2385. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dewerchin M and Carmeliet P: PlGF: A multitasking cytokine with disease-restricted activity. Cold Spring Harb Perspect Med. 2:a0110562012. View Article : Google Scholar : PubMed/NCBI | |
Li X, Jin Q, Yao Q, Zhou Y, Zou Y, Li Z, Zhang S and Tu C: Placental growth factor contributes to liver inflammation, angiogenesis, Fibrosis in mice by promoting hepatic macrophage recruitment and activation. Front Immunol. 8:8012017. View Article : Google Scholar : PubMed/NCBI | |
Reif S, Lang A, Lindquist JN, Yata Y, Gabele E, Scanga A, Brenner DA and Rippe RA: The role of focal adhesion kinase-phosphatidylinositol 3-kinase-akt signaling in hepatic stellate cell proliferation and type I collagen expression. J Biol Chem. 278:8083–8090. 2003. View Article : Google Scholar : PubMed/NCBI | |
Van Steenkiste C, Ribera J, Geerts A, Pauta M, Tugues S, Casteleyn C, Libbrecht L, Olievier K, Schroyen B, Reynaert H, et al: Inhibition of placental growth factor activity reduces the severity of fibrosis, inflammation, and portal hypertension in cirrhotic mice. Hepatology. 53:1629–1640. 2011. View Article : Google Scholar : PubMed/NCBI | |
Augustin HG, Koh GY, Thurston G and Alitalo K: Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat Rev Mol Cell Biol. 10:165–177. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gurnik S, Devraj K, Macas J, Yamaji M, Starke J, Scholz A, Sommer K, Di Tacchio M, Vutukuri R, Beck H, et al: Angiopoietin-2-induced blood-brain barrier compromise and increased stroke size are rescued by VE-PTP-dependent restoration of Tie2 signaling. Acta Neuropathol. 131:753–773. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wynn TA and Barron L: Macrophages: Master regulators of inflammation and fibrosis. Semin Liver Dis. 30:245–257. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ma PF, Gao CC, Yi J, Zhao JL, Liang SQ, Zhao Y, Ye YC, Bai J, Zheng QJ, Dou KF, et al: Cytotherapy with M1-polarized macrophages ameliorates liver fibrosis by modulating immune microenvironment in mice. J Hepatol. 67:770–779. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tacke F: Targeting hepatic macrophages to treat liver diseases. J Hepatol. 66:1300–1312. 2017. View Article : Google Scholar : PubMed/NCBI | |
Varol C, Mildner A and Jung S: Macrophages: Development and tissue specialization. Annu Rev Immunol. 33:643–675. 2015. View Article : Google Scholar : PubMed/NCBI | |
You Q, Holt M, Yin H, Li G, Hu CJ and Ju C: Role of hepatic resident and infiltrating macrophages in liver repair after acute injury. Biochem Pharmacol. 86:836–843. 2013. View Article : Google Scholar : PubMed/NCBI | |
Vollmar B, Siegmund S, Richter S and Menger MD: Microvascular consequences of Kupffer cell modulation in rat liver fibrogenesis. J Pathol. 189:85–91. 1999. View Article : Google Scholar : PubMed/NCBI | |
Wehr A, Baeck C, Heymann F, Niemietz PM, Hammerich L, Martin C, Zimmermann HW, Pack O, Gassler N, Hittatiya K, et al: Chemokine receptor CXCR6-dependent hepatic NK T cell accumulation promotes inflammation and liver fibrosis. J Immunol. 190:5226–5236. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tacke F and Zimmermann HW: Macrophage heterogeneity in liver injury and fibrosis. J Hepatol. 60:1090–1096. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhou WC, Zhang QB and Qiao L: Pathogenesis of liver cirrhosis. World J Gastroenterol. 20:7312–7324. 2014. View Article : Google Scholar : PubMed/NCBI | |
Koyama Y and Brenner DA: Liver inflammation and fibrosis. J Clin Invest. 127:55–64. 2017. View Article : Google Scholar : PubMed/NCBI | |
Luckey SW and Petersen DR: Activation of Kupffer cells during the course of carbon tetrachloride-induced liver injury and fibrosis in rats. Exp Mol Pathol. 71:226–240. 2001. View Article : Google Scholar : PubMed/NCBI | |
Weiskirchen R and Tacke F: Cellular and molecular functions of hepatic stellate cells in inflammatory responses and liver immunology. Hepatobiliary Surg Nutr. 3:344–363. 2014.PubMed/NCBI | |
Wang J, Leclercq I, Brymora JM, Xu N, Ramezani-Moghadam M, London RM, Brigstock D and George J: Kupffer cells mediate leptin-induced liver fibrosis. Gastroenterology. 137:713–723. 2009. View Article : Google Scholar : PubMed/NCBI | |
Meng F, Wang K, Aoyama T, Grivennikov SI, Paik Y, Scholten D, Cong M, Iwaisako K, Liu X, Zhang M, et al: Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice. Gastroenterology. 143:765–776. 2012. View Article : Google Scholar : PubMed/NCBI | |
Seki E and Brenner DA: Recent advancement of molecular mechanisms of liver fibrosis. J Hepatobiliary Pancreat Sci. 22:512–518. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hara M, Kono H, Furuya S, Hirayama K, Tsuchiya M and Fujii H: Interleukin-17A plays a pivotal role in cholestatic liver fibrosis in mice. J Surg Res. 183:574–582. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mochida S, Ishikawa K, Toshima K, Inao M, Ikeda H, Matsui A, Shibuya M and Fujiwara K: The mechanisms of hepatic sinusoidal endothelial cell regeneration: A possible communication system associated with vascular endothelial growth factor in liver cells. J Gastroenterol Hepatol. 13 (Suppl 1):S1–S5. 1998. View Article : Google Scholar | |
Zhang CY, Yuan WG, He P, Lei JH and Wang CX: Liver fibrosis and hepatic stellate cells: Etiology, pathological hallmarks and therapeutic targets. World J Gastroenterol. 22:10512–10522. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lee UE and Friedman SL: Mechanisms of hepatic fibrogenesis. Best Pract Res Clin Gastroenterol. 25:195–206. 2011. View Article : Google Scholar : PubMed/NCBI | |
Melgar-Lesmes P and Edelman ER: Monocyte-endothelial cell interactions in the regulation of vascular sprouting and liver regeneration in mouse. J Hepatol. 63:917–925. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hoefer IE, van Royen N, Rectenwald JE, Deindl E, Hua J, Jost M, Grundmann S, Voskuil M, Ozaki CK, Piek JJ and Buschmann IR: Arteriogenesis proceeds via ICAM-1/Mac-1-mediated mechanisms. Circ Res. 94:1179–1185. 2004. View Article : Google Scholar : PubMed/NCBI | |
Schubert SY, Benarroch A, Monter-Solans J and Edelman ER: Primary monocytes regulate endothelial cell survival through secretion of angiopoietin-1 and activation of endothelial Tie2. Arterioscler Thromb Vasc Biol. 31:870–875. 2011. View Article : Google Scholar : PubMed/NCBI | |
Priya MK, Sahu G, Soto-Pantoja DR, Goldy N, Sundaresan AM, Jadhav V, Barathkumar TR, Saran U, Jaffar AB, Roberts DD, et al: Tipping off endothelial tubes: Nitric oxide drives tip cells. Angiogenesis. 18:175–189. 2015. View Article : Google Scholar : PubMed/NCBI | |
De Smet F, Segura I, De Bock K, Hohensinner PJ and Carmeliet P: Mechanisms of vessel branching: Filopodia on endothelial tip cells lead the way. Arterioscler Thromb Vasc Biol. 29:639–649. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gao B and Radaeva S: Natural killer and natural killer T cells in liver fibrosis. Biochim Biophys Acta. 1832:1061–1069. 2013. View Article : Google Scholar : PubMed/NCBI | |
Connolly MK, Bedrosian AS, Mallen-St CJ, Mitchell AP, Ibrahim J, Stroud A, Pachter HL, Bar-Sagi D, Frey AB and Miller G: In liver fibrosis, dendritic cells govern hepatic inflammation in mice via TNF-alpha. J Clin Invest. 119:3213–3225. 2009.PubMed/NCBI | |
Ehrlich L, Scrushy M, Meng F, Lairmore TC, Alpini G and Glaser S: Biliary epithelium: A neuroendocrine compartment in cholestatic liver disease. Clin Res Hepatol Gastroenterol. 42:296–305. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gao B, Radaeva S and Park O: Liver natural killer and natural killer T cells: Immunobiology and emerging roles in liver diseases. J Leukoc Biol. 86:513–528. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang H and Yin S: Natural killer T cells in liver injury, inflammation and cancer. Expert Rev Gastroenterol Hepatol. 9:1077–1085. 2015. View Article : Google Scholar : PubMed/NCBI | |
Radaeva S, Sun R, Jaruga B, Nguyen VT, Tian Z and Gao B: Natural killer cells ameliorate liver fibrosis by killing activated stellate cells in NKG2D-dependent and tumor necrosis factor-related apoptosis-inducing ligand-dependent manners. Gastroenterology. 130:435–452. 2006. View Article : Google Scholar : PubMed/NCBI | |
Peng Y, Yang T, Huang K, Shen L, Tao Y and Liu C: Salvia miltiorrhiza ameliorates liver fibrosis by activating hepatic natural killer cells in vivo and in vitro. Front Pharmacol. 9:7622018. View Article : Google Scholar : PubMed/NCBI | |
Cheng JT, Deng YN, Yi HM, Wang GY, Fu BS, Chen WJ, Liu W, Tai Y, Peng YW and Zhang Q: Hepatic carcinoma-associated fibroblasts induce IDO-producing regulatory dendritic cells through IL-6-mediated STAT3 activation. Oncogenesis. 5:e1982016. View Article : Google Scholar : PubMed/NCBI | |
Jiao J, Sastre D, Fiel MI, Lee UE, Ghiassi-Nejad Z, Ginhoux F, Vivier E, Friedman SL, Merad M and Aloman C: Dendritic cell regulation of carbon tetrachloride-induced murine liver fibrosis regression. Hepatology. 55:244–255. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sato K, Meng F, Giang T, Glaser S and Alpini G: Mechanisms of cholangiocyte responses to injury. Biochim Biophys Acta Mol Basis Dis. 1864:1262–1269. 2018. View Article : Google Scholar : PubMed/NCBI | |
Omenetti A, Syn WK, Jung Y, Francis H, Porrello A, Witek RP, Choi SS, Yang L, Mayo MJ, Gershwin ME, et al: Repair-related activation of hedgehog signaling promotes cholangiocyte chemokine production. Hepatology. 50:518–527. 2009. View Article : Google Scholar : PubMed/NCBI | |
Parola M and Pinzani M: Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues. Mol Aspects Med. 65:37–55. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sohrabpour AA, Mohamadnejad M and Malekzadeh R: Review article: The reversibility of cirrhosis. Aliment Pharmacol Ther. 36:824–832. 2012. View Article : Google Scholar : PubMed/NCBI | |
Poilil SS, George TR, Moon MJ and Jeong YY: Nanoparticles for the treatment of liver fibrosis. Int J Nanomedicine. 12:6997–7006. 2017. View Article : Google Scholar : PubMed/NCBI | |
Feng R, Yuan X, Shao C, Ding H, Liebe R and Weng HL: Are we any closer to treating liver fibrosis (and if no, why not)? J Dig Dis. 19:118–126. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gracia-Sancho J, Marrone G and Fernandez-Iglesias A: Hepatic microcirculation and mechanisms of portal hypertension. Nat Rev Gastroenterol Hepatol. 16:221–234. 2019. View Article : Google Scholar : PubMed/NCBI |