1
|
Nangia V, Jonas JB, George R, Lingam V,
Ellwein L, Cicinelli MV, Das A, Flaxman SR, Keeffe JE, Kempen JH,
et al Vision Loss Expert Group of the Global Burden of Disease
Study, : Prevalence and causes of blindness and vision impairment:
Magnitude, temporal trends and projections in South and Central
Asia. Br J Ophthalmol. 103:871–877. 2019. View Article : Google Scholar : PubMed/NCBI
|
2
|
Jin C, Chen X, Law A, Kang Y, Wang X, Xu W
and Yao K: Different-sized incisions for phacoemulsification in
age-related cataract. Cochrane Database Syst Rev.
9:CD0105102017.PubMed/NCBI
|
3
|
Tang Y, Wang X, Wang J, Huang W, Gao Y,
Luo Y, Yang J and Lu Y: Prevalence of age-related cataract and
cataract surgery in a Chinese adult population: The Taizhou Eye
Study. Invest Ophthalmol Vis Sci. 57:1193–1200. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Milazzo S, Grenot M and Benzerroug M:
Posterior capsule opacification. J Fr Ophtalmol. 37:825–830.
2014.(In French). View Article : Google Scholar : PubMed/NCBI
|
5
|
Mathias RT, White TW and Gong X: Lens gap
junctions in growth, differentiation, and homeostasis. Physiol Rev.
90:179–206. 2010. View Article : Google Scholar : PubMed/NCBI
|
6
|
Belusko PB, Nakajima T, Azuma M and
Shearer TR: Expression changes in mRNAs and mitochondrial damage in
lens epithelial cells with selenite. Biochim Biophys Acta.
1623:135–142. 2003. View Article : Google Scholar : PubMed/NCBI
|
7
|
Sun T, Li MY, Li PF and Cao JM: MicroRNAs
in cardiac autophagy: Small molecules and big role. Cells.
7:E1042018. View Article : Google Scholar : PubMed/NCBI
|
8
|
Wang J, Haubrock M, Cao KM, Hua X, Zhang
CY, Wingender E and Li J: Regulatory coordination of clustered
microRNAs based on microRNA-transcription factor regulatory
network. BMC Syst Biol. 5:1992011. View Article : Google Scholar : PubMed/NCBI
|
9
|
Yu X, Zheng H, Chan MT and Wu WKK:
MicroRNAs: New players in cataract. Am J Transl Res. 9:3896–3903.
2017.PubMed/NCBI
|
10
|
Li ZN, Ge MX and Yuan ZF: MicroRNA-182-5p
protects human lens epithelial cells against oxidative
stress-induced apoptosis by inhibiting NOX4 and p38 MAPK
signalling. BMC Ophthalmol. 20:2332020. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhang GB, Liu ZG, Wang J and Fan W: MiR-34
promotes apoptosis of lens epithelial cells in cataract rats via
the TGF-β/Smads signaling pathway. Eur Rev Med Pharmacol Sci.
24:3485–3491. 2020.PubMed/NCBI
|
12
|
Liu Y, Li H and Liu Y: microRNA-378a
regulates the reactive oxygen species (ROS)/phosphatidylinositol
3-kinases (PI3K)/AKT signaling pathway in human lens epithelial
cells and cataract. Med Sci Monit. 25:4314–4321. 2019. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zhou W, Xu J, Wang C, Shi D and Yan Q:
miR-23b-3p regulates apoptosis and autophagy via suppressing SIRT1
in lens epithelial cells. J Cell Biochem. 120:19635–19646. 2019.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Liu S, Hu C, Wang Y, Shi G, Li Y and Wu H:
miR-124 inhibits proliferation and invasion of human retinoblastoma
cells by targeting STAT3. Oncol Rep. 36:2398–2404. 2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Kuracha MR, Burgess D, Siefker E, Cooper
JT, Licht JD, Robinson ML and Govindarajan V: Spry1 and Spry2 are
necessary for lens vesicle separation and corneal differentiation.
Invest Ophthalmol Vis Sci. 52:6887–6897. 2011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Zhang Y, Yuan F, Liu L, Chen Z, Ma X, Lin
Z and Zou J: The role of the miR-21/SPRY2 axis in modulating
proangiogenic factors, epithelial phenotypes, and wound healing in
corneal epithelial cells. Invest Ophthalmol Vis Sci. 60:3854–3862.
2019. View Article : Google Scholar : PubMed/NCBI
|
17
|
Shin EH, Basson MA, Robinson ML, McAvoy JW
and Lovicu FJ: Sprouty is a negative regulator of transforming
growth factor β-induced epithelial-to-mesenchymal transition and
cataract. Mol Med. 18:861–873. 2012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Tan X, Zhu Y, Chen C, Chen X, Qin Y, Qu B,
Luo L, Lin H, Wu M, Chen W, et al: Sprouty2 suppresses
epithelial-mesenchymal transition of human lens epithelial cells
through blockade of Smad2 and ERK1/2 pathways. PLoS One.
11:e01592752016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Webb AH, Gao BT, Goldsmith ZK, Irvine AS,
Saleh N, Lee RP, Lendermon JB, Bheemreddy R, Zhang Q, Brennan RC,
et al: Inhibition of MMP-2 and MMP-9 decreases cellular migration,
and angiogenesis in in vitro models of retinoblastoma. BMC Cancer.
17:4342017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Awasthi N, Wang-Su ST and Wagner BJ:
Downregulation of MMP-2 and −9 by proteasome inhibition: A possible
mechanism to decrease LEC migration and prevent posterior capsular
opacification. Invest Ophthalmol Vis Sci. 49:1998–2003. 2008.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Chylack LT Jr, Wolfe JK, Singer DM, Leske
MC, Bullimore MA, Bailey IL, Friend J, McCarthy D and Wu SY; The
Longitudinal Study of Cataract Study Group, : The Lens Opacities
Classification System III. Arch Ophthalmol. 111:831–836. 1993.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Thrimawithana TR, Rupenthal ID, Räsch SS,
Lim JC, Morton JD and Bunt CR: Drug delivery to the lens for the
management of cataracts. Adv Drug Deliv Rev. 126:185–194. 2018.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Wei M, Xing KY, Fan YC, Libondi T and Lou
MF: Loss of thiol repair systems in human cataractous lenses.
Invest Ophthalmol Vis Sci. 56:598–605. 2014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Fu W, Wu X, Yang Z and Mi H: The effect of
miR-124-3p on cell proliferation and apoptosis in bladder cancer by
targeting EDNRB. Arch Med Sci. 15:1154–1162. 2019. View Article : Google Scholar : PubMed/NCBI
|
26
|
Yan G, Li Y, Zhan L, Sun S, Yuan J, Wang
T, Yin Y, Dai Z, Zhu Y, Jiang Z, et al: Decreased miR-124-3p
promoted breast cancer proliferation and metastasis by targeting
MGAT5. Am J Cancer Res. 9:585–596. 2019.PubMed/NCBI
|
27
|
Huang J, Yang Y, Fang F and Liu K: MALAT1
modulates the autophagy of retinoblastoma cell through
miR-124-mediated stx17 regulation. J Cell Biochem. 119:3853–3863.
2018. View Article : Google Scholar : PubMed/NCBI
|
28
|
Wang L, Yang D, Tian R and Zhang H: NEAT1
promotes retinoblastoma progression via modulating miR-124. J Cell
Biochem. 120:15585–15593. 2019. View Article : Google Scholar : PubMed/NCBI
|
29
|
Hu C, Liu S, Han M, Wang Y and Xu C:
Knockdown of lncRNA XIST inhibits retinoblastoma progression by
modulating the miR-124/STAT3 axis. Biomed Pharmacother.
107:547–554. 2018. View Article : Google Scholar : PubMed/NCBI
|
30
|
Taketomi T, Onimura T, Yoshiga D, Muratsu
D, Sanui T, Fukuda T, Kusukawa J and Nakamura S: Sprouty2 is
involved in the control of osteoblast proliferation and
differentiation through the FGF and BMP signaling pathways. Cell
Biol Int. 42:1106–1114. 2018. View Article : Google Scholar : PubMed/NCBI
|
31
|
Zhao Q, Chen S, Zhu Z, Yu L, Ren Y, Jiang
M, Weng J and Li B: miR-21 promotes EGF-induced pancreatic cancer
cell proliferation by targeting Spry2. Cell Death Dis. 9:11572018.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Liu W, Yang Y, Yan J and Wang L:
MicroRNA-23b-3p promotes the proliferation, migration, and
epithelial-mesenchymal transition of lens epithelial cells by
targeting Sprouty2. Acta Histochem. 121:704–711. 2019. View Article : Google Scholar : PubMed/NCBI
|
33
|
Sun MX, Yu F, Gong ML, Fan GL and Liu CX:
Effects of curcumin on the role of MMP-2 in endometrial cancer cell
proliferation and invasion. Eur Rev Med Pharmacol Sci.
22:5033–5041. 2018.PubMed/NCBI
|
34
|
Wang X, Yang B, She Y and Ye Y: The lncRNA
TP73-AS1 promotes ovarian cancer cell proliferation and metastasis
via modulation of MMP2 and MMP9. J Cell Biochem. 119:7790–7799.
2018. View Article : Google Scholar : PubMed/NCBI
|