1
|
Vancamelbeke M and Vermeire S: The
intestinal barrier: A fundamental role in health and disease.
Expert Rev Gastroenterol Hepatol. 11:821–834. 2017. View Article : Google Scholar : PubMed/NCBI
|
2
|
Aguirre Valadez JM, Rivera-Espinosa L,
Mendez-Guerrero O, Chavez-Pacheco JL, Juarez IG and Torre A:
Intestinal permeability in a patient with liver cirrhosis. TherClin
Risk Manag. 12:1729–1748. 2016. View Article : Google Scholar
|
3
|
Wiest R, Lawson M and Geuking M:
Pathological bacterial translocation in liver cirrhosis. J Hepatol.
60:197–209. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Odenwald MA and Turner JR: The intestinal
epithelial barrier: A therapeutic target? Nat Rev Gastroenterol
Hepatol. 14:9–21. 2017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Kelly JR, Kennedy PJ, Cryan JF, Dinan TG,
Clarke G and Hyland NP: Breaking down the barriers: The gut
microbiome, intestinal permeability and stress-related psychiatric
disorders. Front Cell Neurosci. 14:3922015.
|
6
|
Song HL, Lv S and Liu P: The roles of
tumor necrosis factor-alpha in colon tight junction protein
expression and intestinal mucosa structure in a mouse model of
acute liver failure. BMC Gastroenterol. 9:702009. View Article : Google Scholar : PubMed/NCBI
|
7
|
Murthy KS: Signaling for contraction and
relaxation in smooth muscle of the gut. Annu Rev Physiol.
68:345–374. 2006. View Article : Google Scholar : PubMed/NCBI
|
8
|
Rattan S, Phillips BR and Maxwell PJ 4th:
RhoA/Rho-kinase: Pathophysiologic and therapeutic implications in
gastrointestinal smooth muscle tone and relaxation.
Gastroenterology. 138:13–18.e1-3. 2010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Zolotarevsky Y, Hecht G, Koutsouris A,
Gonzalez DE, Quan C, Tom J, Mrsny RJ and Turner JR: A
membrane-permeant peptide that inhibits MLC kinase restores barrier
function in in vitro models of intestinal disease.
Gastroenterology. 123:163–172. 2002. View Article : Google Scholar : PubMed/NCBI
|
10
|
Rattan S: Ca2+/calmodulin/MLCK pathway
initiates, and RhoA/ROCK maintains, the internal anal sphincter
smooth muscle tone. Am J Physiol Gastrointest Liver Physiol.
312:G63–G66. 2017. View Article : Google Scholar : PubMed/NCBI
|
11
|
Xiong Y, Wang C, Shi L, Wang L, Zhou Z,
Chen D, Wang J and Guo H: Myosin light chain kinase: A potential
target for treatment of inflammatory diseases. Front Pharmacol.
8:2922017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Cunningham KE and Turner JR: Myosin light
chain kinase: Pulling the strings of epithelial tight junction
function. Ann N Y Acad Sci. 1258:34–42. 2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Rigor RR, Shen Q, Pivetti CD, Wu MH and
Yuan SY: Myosin light chain kinase signaling in endothelial barrier
dysfunction. Med Res Rev. 33:911–933. 2013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhang Z, Tian L and Jiang K: Propofol
attenuates inflammatory response and apoptosis to protect
d-galactosamine/lipopolysaccharide induced acute liver injury via
regulating TLR4/NF-κB/NLRP3 pathway. Int Immunopharmacol.
77:1059742019. View Article : Google Scholar : PubMed/NCBI
|
15
|
Liu X, Wang T, Liu X, Cai L, Qi J, Zhang P
and Li Y: Biochanin A protects
lipopolysaccharide/D-galactosamine-induced acute liver injury in
mice by activating the Nrf2 pathway and inhibiting NLRP3
inflammasome activation. Int Immunopharmacol. 38:324–331. 2016.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Simpson KJ, Henderson NC, Bone-Larson CL,
Lukacs NW, Hogaboam CM and Kunkel SL: Chemokines in the
pathogenesis of liver disease: So many players with poorly defined
roles. Clin Sci (Lond). 104:47–63. 2003. View Article : Google Scholar : PubMed/NCBI
|
17
|
Rietschel ET, Kirikae T, Schade FU, Mamat
U, Schmidt G, Loppnow H, Ulmer AJ, Zähringer U, Seydel U, Di Padova
F, et al: Bacterial endotoxin: Molecular relationships of structure
to activity and function. FASEB J. 8:217–225. 1994. View Article : Google Scholar : PubMed/NCBI
|
18
|
Belanger M and Butterworth RF: Acute liver
failure: A critical appraisal of available animal models. Metab
Brain Dis. 20:409–423. 2005. View Article : Google Scholar : PubMed/NCBI
|
19
|
Kawaratani H, Tsujimoto T, Douhara A,
Takaya H, Moriya K, Namisaki T, Noguchi R, Yoshiji H, Fujimoto M
and Fukui H: The effect of inflammatory cytokines in alcoholic
liver disease. Mediators Inflamm. 2013:4951562013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Silverstein R: D-galactosamine lethality
model: Scope and limitations. J Endotoxin Res. 10:147–162. 2004.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Wang Y, Gao LN, Cui YL and Jiang HL:
Protective effect of danhong injection on acute hepatic failure
induced by lipopolysaccharide and d-galactosamine in mice. Evid
Based Complement Alternat Med. 2014:1539022014.PubMed/NCBI
|
22
|
Totsukawa G, Yamakita Y, Yamashiro S,
Hartshorne DJ, Sasaki Y and Matsumura F: Distinct roles of ROCK
(Rho-kinase) and MLCK in spatial regulation of MLC phosphorylation
for assembly of stress fibers and focal adhesions in 3T3
fibroblasts. J Cell Biol. 150:797–806. 2000. View Article : Google Scholar : PubMed/NCBI
|
23
|
Kassianidou E, Hughes JH and Kumar S:
Activation of ROCK and MLCK tunes regional stress fiber formation
and mechanics via preferential myosin light chain phosphorylation.
Mol Biol Cell. 28:3832–3843. 2017. View Article : Google Scholar : PubMed/NCBI
|
24
|
Su L, Nalle SC, Shen L, Turner ES, Singh
G, Breskin LA, Khramtsova EA, Khramtsova G, Tsai PY, Fu YX, et al:
TNFR2 activates MLCK-dependent tight junction dysregulation to
cause apoptosis-mediated barrier loss and experimental colitis.
Gastroenterology. 145:407–415. 2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Qasim M, Rahman h, Ahmed R, Oellerich M
and Asif AR: Mycophenolic acid mediated disruption of the
intestinal epithelial tight junctions. Exp Cell Res. 322:277–289.
2014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Nusrat A, Turner JR and Madara JL:
Molecular physiology and pathophysiology of tight junctions. IV.
Regulation of tight junctions by extracellular stimuli: Nutrients,
cytokines, and immune cells. Am J Physiol Gastrointest Liver
Physiol. 279:G851–G857. 2000. View Article : Google Scholar : PubMed/NCBI
|
27
|
Andrews C, McLean MH and Durum SK:
Cytokine tuning of intestinal epithelial function. Front Immunol.
9:12702018. View Article : Google Scholar : PubMed/NCBI
|
28
|
Gibson PR: Increased gut permeability in
Crohn's disease: Is TNF the link? Gut. 53:1724–1725. 2004.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Sands BE and Kaplan GG: The role of
TNFalpha in ulcerative colitis. J Clin Pharmacol. 47:930–941. 2007.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Yang R, Han X, Uchiyama T, Watkins SK,
Yaguchi A, Delude RL and Fink MP: IL-6 is essential for development
of gut barrier dysfunction after hemorrhagic shock and
resuscitation in mice. Am J Physiol Gastrointest Liver Physiol.
285:G621–G629. 2003. View Article : Google Scholar : PubMed/NCBI
|
31
|
Maruo N, Morita I, Shirao M and Murota S:
IL-6 increases endothelial permeability in vitro. Endocrinology.
131:710–714. 1992. View Article : Google Scholar : PubMed/NCBI
|
32
|
Ye X and Sun M: AGR2 ameliorates tumor
necrosis factor-α-induced epithelial barrier dysfunction via
suppression of NF-κB p65-mediated MLCK/p-MLC pathway activation.
Int J Mol Med. 39:1206–1214. 2017. View Article : Google Scholar : PubMed/NCBI
|