Role of connexins in neurodegenerative diseases (Review)
- Authors:
- Juping Xing
- Changshui Xu
-
Affiliations: Department of Physiology, Basic Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China - Published online on: March 23, 2021 https://doi.org/10.3892/mmr.2021.12034
- Article Number: 395
This article is mentioned in:
Abstract
Checkoway H, Lundin JI and Kelada SN: Neurodegenerative diseases. IARC Sci Publ. 407–419. 2011.PubMed/NCBI | |
Blanchet PJ and Brefel-Courbon C: Chronic pain and pain processing in Parkinson's disease. Prog Neuropsychopharmacol Biol Psychiatry. 87:200–206. 2018. View Article : Google Scholar : PubMed/NCBI | |
de Tommaso M, Arendt-Nielsen L, Defrin R, Kunz M, Pickering G and Valeriani M: Pain assessment in neurodegenerative diseases. Behav Neurol. 2016:29493582016. View Article : Google Scholar : PubMed/NCBI | |
Nayak D, Roth TL and McGavern DB: Microglia development and function. Annu Rev Immunol. 32:367–402. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zuchero JB and Barres BA: Glia in mammalian development and disease. Development. 142:3805–3809. 2015. View Article : Google Scholar : PubMed/NCBI | |
Subhramanyam CS, Wang C, Hu Q and Dheen ST: Microglia-mediated neuroinflammation in neurodegenerative diseases. Semin Cell Dev Biol. 94:112–120. 2019. View Article : Google Scholar : PubMed/NCBI | |
Skaper SD: Ion channels on microglia: Therapeutic targets for neuroprotection. CNS Neurol Disord Drug Targets. 10:44–56. 2011. View Article : Google Scholar : PubMed/NCBI | |
Rash JE, Yasumura T, Dudek FE and Nagy JI: Cell-specific expression of connexins and evidence of restricted gap junctional coupling between glial cells and between neurons. J Neurosci. 21:1983–2000. 2001. View Article : Google Scholar : PubMed/NCBI | |
Beyer EC and Berthoud VM: Gap junction gene and protein families: Connexins, innexins, and pannexins. Biochim Biophys Acta Biomembr. 1860:5–8. 2018. View Article : Google Scholar : PubMed/NCBI | |
Nielsen MS, Axelsen LN, Sorgen PL, Verma V, Delmar M and Holstein-Rathlou NH: Gap junctions. Compr Physiol. 2:1981–2035. 2012.PubMed/NCBI | |
Gomes P, Srinivas SP, Van Driessche W, Vereecke J and Himpens B: ATP release through connexin hemichannels in corneal endothelial cells. Invest Ophthalmol Vis Sci. 46:1208–1218. 2005. View Article : Google Scholar : PubMed/NCBI | |
Li H, Liu TF, Lazrak A, Peracchia C, Goldberg GS, Lampe PD and Johnson RG: Properties and regulation of gap junctional hemichannels in the plasma membranes of cultured cells. J Cell Biol. 134:1019–1030. 1996. View Article : Google Scholar : PubMed/NCBI | |
Rhett JM, Fann SA and Yost MJ: Purinergic signaling in early inflammatory events of the foreign body response: Modulating extracellular ATP as an enabling technology for engineered implants and tissues. Tissue Eng Part B Rev. 20:392–402. 2014. View Article : Google Scholar : PubMed/NCBI | |
Rhett JM and Yeh ES: The potential for connexin hemichannels to drive breast cancer progression through regulation of the inflammatory response. Int J Mol Sci. 19:10432018. View Article : Google Scholar | |
Merrifield PA and Laird DW: Connexins in skeletal muscle development and disease. Semin Cell Dev Biol. 50:67–73. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hervé JC: Membrane channels formed by gap junction proteins. Biochim Biophys Acta Biomembr. 1860:1–4. 2018. View Article : Google Scholar : PubMed/NCBI | |
Martins-Marques T, Ribeiro-Rodrigues T, Batista-Almeida D, Aasen T, Kwak BR and Girao H: Biological functions of connexin43 beyond intercellular communication. Trends Cell Biol. 29:835–847. 2019. View Article : Google Scholar : PubMed/NCBI | |
Laird DW: Closing the gap on autosomal dominant connexin-26 and connexin-43 mutants linked to human disease. J Biol Chem. 283:2997–3001. 2008. View Article : Google Scholar : PubMed/NCBI | |
Vinken M: Connexin hemichannels: Novel mediators of toxicity. Arch Toxicol. 89:143–145. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hervé JC and Derangeon M: Gap-junction-mediated cell-to-cell communication. Cell Tissue Res. 352:21–31. 2013. View Article : Google Scholar : PubMed/NCBI | |
Meda P: Gap junction proteins are key drivers of endocrine function. Biochim Biophys Acta Biomembr. 1860:124–140. 2018. View Article : Google Scholar : PubMed/NCBI | |
Harris AL: Electrical coupling and its channels. J Gen Physiol. 150:1606–1639. 2018. View Article : Google Scholar : PubMed/NCBI | |
Traub RD, Whittington MA, Gutiérrez R and Draguhn A: Electrical coupling between hippocampal neurons: Contrasting roles of principal cell gap junctions and interneuron gap junctions. Cell Tissue Res. 373:671–691. 2018. View Article : Google Scholar : PubMed/NCBI | |
Srinivas M, Calderon DP, Kronengold J and Verselis VK: Regulation of connexin hemichannels by monovalent cations. J Gen Physiol. 127:67–75. 2006. View Article : Google Scholar : PubMed/NCBI | |
Contreras JE, Sáez JC, Bukauskas FF and Bennett MV: Gating and regulation of connexin 43 (Cx43) hemichannels. Proc Natl Acad Sci USA. 100:11388–11393. 2003. View Article : Google Scholar : PubMed/NCBI | |
Quist AP, Rhee SK, Lin H and Lal R: Physiological role of gap-junctional hemichannels. Extracellular calcium-dependent isosmotic volume regulation. J Cell Biol. 148:1063–1074. 2000. View Article : Google Scholar : PubMed/NCBI | |
Stout CE, Costantin JL, Naus CC and Charles AC: Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels. J Biol Chem. 277:10482–10488. 2002. View Article : Google Scholar : PubMed/NCBI | |
Taruno A: ATP release channels. Int J Mol Sci. 19:8082018. View Article : Google Scholar | |
Xing L, Yang T, Cui S and Chen G: Connexin hemichannels in astrocytes: Role in CNS disorders. Front Mol Neurosci. 12:232019. View Article : Google Scholar : PubMed/NCBI | |
Khakh BS: Molecular physiology of P2X receptors and ATP signalling at synapses. Nat Rev Neurosci. 2:165–174. 2001. View Article : Google Scholar : PubMed/NCBI | |
Rogne P, Andersson D, Grundström C, Sauer-Eriksson E, Linusson A and Wolf-Watz M: Nucleation of an activating conformational change by a cation-π interaction. Biochemistry. 58:3408–3412. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kawasaki A, Hayashi T, Nakachi K, Trosko JE, Sugihara K, Kotake Y and Ohta S: Modulation of connexin 43 in rotenone-induced model of Parkinson's disease. Neuroscience. 160:61–68. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sáez JC, Schalper KA, Retamal MA, Orellana JA, Shoji KF and Bennett MV: Cell membrane permeabilization via connexin hemichannels in living and dying cells. Exp Cell Res. 316:2377–2389. 2010. View Article : Google Scholar : PubMed/NCBI | |
Delvaeye T, Vandenabeele P, Bultynck G, Leybaert L and Krysko DV: Therapeutic targeting of connexin channels: New views and challenges. Trends Mol Med. 24:1036–1053. 2018. View Article : Google Scholar : PubMed/NCBI | |
Parkinson J: An essay on the shaking palsy. 1817. J Neuropsychiatry Clin Neurosci. 14:223–236; discussion 222. 2002. View Article : Google Scholar : PubMed/NCBI | |
Hirsch L, Jette N, Frolkis A, Steeves T and Pringsheim T: The incidence of Parkinson's disease: A systematic review and meta-analysis. Neuroepidemiology. 46:292–300. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jankovic J: Parkinson's disease: Clinical features and diagnosis. J Neurol Neurosurg Psychiatry. 79:368–376. 2008. View Article : Google Scholar : PubMed/NCBI | |
Maatouk L, Yi C, Carrillo-de Sauvage MA, Compagnion AC, Hunot S, Ezan P, Hirsch EC, Koulakoff A, Pfrieger FW, Tronche F, et al: Glucocorticoid receptor in astrocytes regulates midbrain dopamine neurodegeneration through connexin hemichannel activity. Cell Death Differ. 26:580–596. 2019. View Article : Google Scholar : PubMed/NCBI | |
DeLong MR and Wichmann T: Basal ganglia circuits as targets for neuromodulation in Parkinson disease. JAMA Neurol. 72:1354–1360. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gerfen CR and Surmeier DJ: Modulation of striatal projection systems by dopamine. Annu Rev Neurosci. 34:441–466. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bryois J, Skene NG, Hansen TF, Kogelman LJA, Watson HJ, Liu Z; Eating Disorders Working Group of the Psychiatric Genomics Consortium; International Headache Genetics Consortium; 23andMe Research Team; Brueggeman L, ; et al: Genetic identification of cell types underlying brain complex traits yields insights into the etiology of Parkinson's disease. Nat Genet. 52:482–493. 2020. View Article : Google Scholar : PubMed/NCBI | |
Orieux G, Francois C, Féger J, Yelnik J, Vila M, Ruberg M, Agid Y and Hirsch EC: Metabolic activity of excitatory parafascicular and pedunculopontine inputs to the subthalamic nucleus in a rat model of Parkinson's disease. Neuroscience. 97:79–88. 2000. View Article : Google Scholar : PubMed/NCBI | |
Hauser RA: α-Synuclein in Parkinson's disease: Getting to the core of the matter. Lancet Neurol. 14:785–786. 2015. View Article : Google Scholar : PubMed/NCBI | |
Diniz LP, Matias I, Araujo APB, Garcia MN, Barros-Aragão FGQ, Alves-Leon SV, de Souza JM, Foguel D, Figueiredo CP, Braga C, et al: α-Synuclein oligomers enhance astrocyte-induced synapse formation through TGF-β1 signaling in a Parkinson's disease model. J Neurochem. 150:138–157. 2019. View Article : Google Scholar : PubMed/NCBI | |
Singh-Bains MK, Waldvogel HJ and Faull RL: The role of the human globus pallidus in Huntington's disease. Brain Pathol. 26:741–751. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kim IS, Ganesan P and Choi DK: Cx43 mediates resistance against MPP+-induced apoptosis in SH-SY5Y neuroblastoma cells via modulating the mitochondrial apoptosis pathway. Int J Mol Sci. 17:18192016. View Article : Google Scholar | |
Wu A, Green CR, Rupenthal ID and Moalem-Taylor G: Role of gap junctions in chronic pain. J Neurosci Res. 90:337–345. 2012. View Article : Google Scholar : PubMed/NCBI | |
Pérez-Alvarez A and Araque A: Astrocyte-neuron interaction at tripartite synapses. Curr Drug Targets. 14:1220–1224. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hertz L, Hansson E and Rönnbäck L: Signaling and gene expression in the neuron-glia unit during brain function and dysfunction: Holger Hydén in memoriam. Neurochem Int. 39:227–252. 2001. View Article : Google Scholar : PubMed/NCBI | |
Jiang BC, Cao DL, Zhang X, Zhang ZJ, He LN, Li CH, Zhang WW, Wu XB, Berta T, Ji RR and Gao YJ: CXCL13 drives spinal astrocyte activation and neuropathic pain via CXCR5. J Clin Invest. 126:745–761. 2016. View Article : Google Scholar : PubMed/NCBI | |
Durkee CA and Araque A: Diversity and specificity of astrocyte-neuron communication. Neuroscience. 396:73–78. 2019. View Article : Google Scholar : PubMed/NCBI | |
Szczupak L: Functional contributions of electrical synapses in sensory and motor networks. Curr Opin Neurobiol. 41:99–105. 2016. View Article : Google Scholar : PubMed/NCBI | |
Halje P, Brys I, Mariman JJ, da Cunha C, Fuentes R and Petersson P: Oscillations in cortico-basal ganglia circuits: Implications for Parkinson's disease and other neurologic and psychiatric conditions. J Neurophysiol. 122:203–231. 2019. View Article : Google Scholar : PubMed/NCBI | |
Adamchic I, Hauptmann C, Barnikol UB, Pawelczyk N, Popovych O, Barnikol TT, Silchenko A, Volkmann J, Deuschl G, Meissner WG, et al: Coordinated reset neuromodulation for Parkinson's disease: Proof-of-concept study. Mov Disord. 29:1679–1684. 2014. View Article : Google Scholar : PubMed/NCBI | |
Dauer W and Przedborski S: Parkinson's disease: Mechanisms and models. Neuron. 39:889–909. 2003. View Article : Google Scholar : PubMed/NCBI | |
Díaz EF, Labra VC, Alvear TF, Mellado LA, Inostroza CA, Oyarzún JE, Salgado N, Quintanilla RA and Orellana JA: Connexin 43 hemichannels and pannexin-1 channels contribute to the α-synuclein-induced dysfunction and death of astrocytes. Glia. 67:1598–1619. 2019.PubMed/NCBI | |
Sarrouilhe D, Dejean C and Mesnil M: Connexin43- and pannexin-based channels in neuroinflammation and cerebral neuropathies. Front Mol Neurosci. 10:3202017. View Article : Google Scholar : PubMed/NCBI | |
Takeuchi H, Jin S, Wang J, Zhang G, Kawanokuchi J, Kuno R, Sonobe Y, Mizuno T and Suzumura A: Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J Biol Chem. 281:21362–21368. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lu C, Meng Z, He Y, Xiao D, Cai H, Xu Y, Liu X, Wang X, Mo L, Liang Z, et al: Involvement of gap junctions in astrocyte impairment induced by manganese exposure. Brain Res Bull. 140:107–113. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sung JY, Lee HJ, Jeong EI, Oh Y, Park J, Kang KS and Chung KC: Alpha-synuclein overexpression reduces gap junctional intercellular communication in dopaminergic neuroblastoma cells. Neurosci Lett. 416:289–293. 2007. View Article : Google Scholar : PubMed/NCBI | |
Reyes JF, Sackmann C, Hoffmann A, Svenningsson P, Winkler J, Ingelsson M and Hallbeck M: Binding of α-synuclein oligomers to Cx32 facilitates protein uptake and transfer in neurons and oligodendrocytes. Acta Neuropathol. 138:23–47. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hare DJ, Adlard PA, Doble PA and Finkelstein DI: Metallobiology of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity. Metallomics. 5:91–109. 2013. View Article : Google Scholar : PubMed/NCBI | |
Fujita A, Yamaguchi H, Yamasaki R, Cui Y, Matsuoka Y, Yamada KI and Kira JI: Connexin 30 deficiency attenuates A2 astrocyte responses and induces severe neurodegeneration in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride Parkinson's disease animal model. J Neuroinflammation. 15:2272018. View Article : Google Scholar : PubMed/NCBI | |
Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Münch AE, Chung WS, Peterson TC, et al: Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 541:481–487. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pannasch U, Freche D, Dallérac G, Ghézali G, Escartin C, Ezan P, Cohen-Salmon M, Benchenane K, Abudara V, Dufour A, et al: Connexin 30 sets synaptic strength by controlling astroglial synapse invasion. Nat Neurosci. 17:549–558. 2014. View Article : Google Scholar : PubMed/NCBI | |
Evin G and Hince C: BACE1 as a therapeutic target in Alzheimer's disease: Rationale and current status. Drugs Aging. 30:755–764. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hardy JA and Higgins GA: Alzheimer's disease: The amyloid cascade hypothesis. Science. 256:184–185. 1992. View Article : Google Scholar : PubMed/NCBI | |
Swerdlow RH, Burns JM and Khan SM: The Alzheimer's disease mitochondrial cascade hypothesis: Progress and perspectives. Biochim Biophys Acta. 1842:1219–1231. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jammal L, Whalley B and Barkai E: Learning-induced modulation of the effect of neuroglial transmission on synaptic plasticity. J Neurophysiol. 119:2373–2379. 2018. View Article : Google Scholar : PubMed/NCBI | |
Walrave L, Vinken M, Albertini G, De Bundel D, Leybaert L and Smolders IJ: Inhibition of connexin43 hemichannels impairs spatial short-term memory without affecting spatial working memory. Front Cell Neurosci. 10:2882016. View Article : Google Scholar : PubMed/NCBI | |
Nagy JI, Li W, Hertzberg EL and Marotta CA: Elevated connexin43 immunoreactivity at sites of amyloid plaques in Alzheimer's disease. Brain Res. 717:173–178. 1996. View Article : Google Scholar : PubMed/NCBI | |
Mei X, Ezan P, Giaume C and Koulakoff A: Astroglial connexin immunoreactivity is specifically altered at β-amyloid plaques in β-amyloid precursor protein/presenilin1 mice. Neuroscience. 171:92–105. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sokoloff L: Energetics of functional activation in neural tissues. Neurochem Res. 24:321–329. 1999. View Article : Google Scholar : PubMed/NCBI | |
Tholey G and Ledig M: Neuronal and astrocytic plasticity: Metabolic aspects. Ann Med Interne (Paris). 141 (Suppl 1):S13–S18. 1990.(In French). | |
Nunomura A, Castellani RJ, Zhu X, Moreira PI, Perry G and Smith MA: Involvement of oxidative stress in Alzheimer disease. J Neuropathol Exp Neurol. 65:631–641. 2006. View Article : Google Scholar : PubMed/NCBI | |
Pocernich CB and Butterfield DA: Elevation of glutathione as a therapeutic strategy in Alzheimer disease. Biochim Biophys Acta. 1822:625–630. 2012. View Article : Google Scholar : PubMed/NCBI | |
Dringen R: Metabolism and functions of glutathione in brain. Prog Neurobiol. 62:649–671. 2000. View Article : Google Scholar : PubMed/NCBI | |
Ong WY, Hu CY, Hjelle OP, Ottersen OP and Halliwell B: Changes in glutathione in the hippocampus of rats injected with kainate: Depletion in neurons and upregulation in glia. Exp Brain Res. 132:510–516. 2000. View Article : Google Scholar : PubMed/NCBI | |
Bolaños JP: Bioenergetics and redox adaptations of astrocytes to neuronal activity. J Neurochem. 139 (Suppl 2):S115–S125. 2016. View Article : Google Scholar | |
Aoyama K, Suh SW, Hamby AM, Liu J, Chan WY, Chen Y and Swanson RA: Neuronal glutathione deficiency and age-dependent neurodegeneration in the EAAC1 deficient mouse. Nat Neurosci. 9:119–126. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hohnholt MC and Dringen R: Short time exposure to hydrogen peroxide induces sustained glutathione export from cultured neurons. Free Radic Biol Med. 70:33–44. 2014. View Article : Google Scholar : PubMed/NCBI | |
Rana S and Dringen R: Gap junction hemichannel-mediated release of glutathione from cultured rat astrocytes. Neurosci Lett. 415:45–48. 2007. View Article : Google Scholar : PubMed/NCBI | |
Orellana JA, Shoji KF, Abudara V, Ezan P, Amigou E, Sáez PJ, Jiang JX, Naus CC, Sáez JC and Giaume C: Amyloid β-induced death in neurons involves glial and neuronal hemichannels. J Neurosci. 31:4962–4977. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hardiman O, Al-Chalabi A, Chio A, Corr EM, Logroscino G, Robberecht W, Shaw PJ, Simmons Z and van den Berg LH: Amyotrophic lateral sclerosis. Nat Rev Dis Primers. 3:170712017. View Article : Google Scholar : PubMed/NCBI | |
Riva N, Agosta F, Lunetta C, Filippi M and Quattrini A: Recent advances in amyotrophic lateral sclerosis. J Neurol. 263:1241–1254. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ohta Y, Nomura E, Shang J, Feng T, Huang Y, Liu X, Shi X, Nakano Y, Hishikawa N, Sato K, et al: Enhanced oxidative stress and the treatment by edaravone in mice model of amyotrophic lateral sclerosis. J Neurosci Res. 97:607–619. 2019. View Article : Google Scholar : PubMed/NCBI | |
Holecek V and Rokyta R: Possible etiology and treatment of amyotrophic lateral sclerosis. Neuro Endocrinol Lett. 38:528–531. 2018.PubMed/NCBI | |
Tedeschi V, Petrozziello T and Secondo A: Calcium dyshomeostasis and lysosomal Ca2+ dysfunction in amyotrophic lateral sclerosis. Cells. 8:12162019. View Article : Google Scholar | |
Mandrioli J, D'Amico R, Zucchi E, Gessani A, Fini N, Fasano A, Caponnetto C, Chiò A, Dalla Bella E, Lunetta C, et al: Rapamycin treatment for amyotrophic lateral sclerosis: Protocol for a phase II randomized, double-blind, placebo-controlled, multicenter, clinical trial (RAP-ALS trial). Medicine (Baltimore). 97:e111192018. View Article : Google Scholar : PubMed/NCBI | |
McGeer PL and McGeer EG: Inflammatory processes in amyotrophic lateral sclerosis. Muscle Nerve. 26:459–470. 2002. View Article : Google Scholar : PubMed/NCBI | |
Spitale FM, Vicario N, Rosa MD, Tibullo D, Vecchio M, Gulino R and Parenti R: Increased expression of connexin 43 in a mouse model of spinal motoneuronal loss. Aging (Albany NY). 12:12598–12608. 2020. View Article : Google Scholar : PubMed/NCBI | |
Almad AA, Doreswamy A, Gross SK, Richard JP, Huo Y, Haughey N and Maragakis NJ: Connexin 43 in astrocytes contributes to motor neuron toxicity in amyotrophic lateral sclerosis. Glia. 64:1154–1169. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hamilton N, Vayro S, Kirchhoff F, Verkhratsky A, Robbins J, Gorecki DC and Butt AM: Mechanisms of ATP- and glutamate-mediated calcium signaling in white matter astrocytes. Glia. 56:734–749. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sheng L, Leshchyns'ka I and Sytnyk V: Cell adhesion and intracellular calcium signaling in neurons. Cell Commun Signal. 11:942013. View Article : Google Scholar : PubMed/NCBI | |
Brini M, Calì T, Ottolini D and Carafoli E: Neuronal calcium signaling: Function and dysfunction. Cell Mol Life Sci. 71:2787–2814. 2014. View Article : Google Scholar : PubMed/NCBI | |
Belousov AB, Nishimune H, Denisova JV and Fontes JD: A potential role for neuronal connexin 36 in the pathogenesis of amyotrophic lateral sclerosis. Neurosci Lett. 666:1–4. 2018. View Article : Google Scholar : PubMed/NCBI | |
Decrock E, Vinken M, De Vuyst E, Krysko DV, D'Herde K, Vanhaecke T, Vandenabeele P, Rogiers V and Leybaert L: Connexin-related signaling in cell death: To live or let die? Cell Death Differ. 16:524–536. 2009. View Article : Google Scholar : PubMed/NCBI | |
McColgan P and Tabrizi SJ: Huntington's disease: A clinical review. Eur J Neurol. 25:24–34. 2018. View Article : Google Scholar : PubMed/NCBI | |
Goetz CG: The history of Parkinson's disease: Early clinical descriptions and neurological therapies. Cold Spring Harb Perspect Med. 1:a0088622011. View Article : Google Scholar : PubMed/NCBI | |
Wichmann T and Dostrovsky JO: Pathological basal ganglia activity in movement disorders. Neuroscience. 198:232–244. 2011. View Article : Google Scholar : PubMed/NCBI | |
Vis JC, Nicholson LF, Faull RL, Evans WH, Severs NJ and Green CR: Connexin expression in Huntington's diseased human brain. Cell Biol Int. 22:837–847. 1998. View Article : Google Scholar : PubMed/NCBI | |
Allen NJ and Lyons DA: Glia as architects of central nervous system formation and function. Science. 362:181–185. 2018. View Article : Google Scholar : PubMed/NCBI | |
Scheefhals N and MacGillavry HD: Functional organization of postsynaptic glutamate receptors. Mol Cell Neurosci. 91:82–94. 2018. View Article : Google Scholar : PubMed/NCBI |