1
|
Hough KP, Curtiss ML, Blain TJ, Liu RM,
Trevor J, Deshane JS and Thannickal VJ: Airway remodeling in
asthma. Front Med (Lausanne). 7:1912020. View Article : Google Scholar : PubMed/NCBI
|
2
|
Kardas G, Kuna P and Panek M: Biological
therapies of severe asthma and their possible effects on airway
remodeling. Front Immunol. 11:11342020. View Article : Google Scholar : PubMed/NCBI
|
3
|
Fehrenbach H, Wagner C and Wegmann M:
Airway remodeling in asthma: What really matters. Cell Tissue Res.
367:551–569. 2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Zhou-Suckow Z, Duerr J, Hagner M, Agrawal
R and Mall MA: Airway mucus, inflammation and remodeling: Emerging
links in the pathogenesis of chronic lung diseases. Cell Tissue
Res. 367:537–550. 2017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Harkness LM, Kanabar V, Sharma HS,
Westergren-Thorsson G and Larsson-Callerfelt AK: Pulmonary vascular
changes in asthma and COPD. Pulm Pharmacol Ther. 29:144–155. 2014.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Olivieri D and Chetta A: Therapeutic
perspectives in vascular remodeling in asthma and chronic
obstructive pulmonary disease. Chem Immunol Allergy. 99:216–225.
2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Barbato A, Turato G, Baraldo S, Bazzan E,
Calabrese F, Panizzolo C, Zanin ME, Zuin R, Maestrelli P, Fabbri LM
and Saetta M: Epithelial damage and angiogenesis in the airways of
children with asthma. Am J Respir Crit Care Med. 174:975–981. 2006.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Alagappan VK, de Boer WI, Misra VK, Mooi
WJ and Sharma HS: Angiogenesis and vascular remodeling in chronic
airway diseases. Cell Biochem Biophys. 67:219–234. 2013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Bakakos P, Patentalakis G and Papi A:
Vascular biomarkers in asthma and COPD. Curr Top Med Chem.
16:1599–1609. 2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Rzucidlo EM: Signaling pathways regulating
vascular smooth muscle cell differentiation. Vascular. 17 (Suppl
1):S15–S20. 2009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Klein T and Bischoff R: Active
metalloproteases of the A Disintegrin and Metalloprotease (ADAM)
family: Biological function and structure. J Proteome Res.
10:17–33. 2011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Dreymueller D, Uhlig S and Ludwig A:
ADAM-family metalloproteinases in lung inflammation: Potential
therapeutic targets. Am J Physiol Lung Cell Mol Physiol.
308:L325–L343. 2015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Li HF, Yan LP, Wang K, Li XT, Liu HX and
Tan W: Association between ADAM33 polymorphisms and asthma risk: A
systematic review and meta-analysis. Respir Res. 20:382019.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Lee JY, Park SW, Chang HK, Kim HY, Rhim T,
Lee JH, Jang AS, Koh ES and Park CS: A disintegrin and
metalloproteinase 33 protein in patients with asthma: Relevance to
airflow limitation. Am J Respir Crit Care Med. 173:729–735. 2006.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Poon AH, Houseman EA, Ryan L, Sparrow D,
Vokonas PS and Litonjua AA: Variants of asthma and chronic
obstructive pulmonary disease genes and lung function decline in
aging. J Gerontol A Biol Sci Med Sci. 69:907–913. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Hur GY and Broide DH: Genes and pathways
regulating decline in lung function and airway remodeling in
asthma. Allergy Asthma Immunol Res. 11:604–621. 2019. View Article : Google Scholar : PubMed/NCBI
|
17
|
Kozlik P, Zuk J, Bartyzel S, Zarychta J,
Okon K, Zareba L, Bazan JG, Kosalka J, Soja J, Musial J and
Bazan-Socha S: The relationship of airway structural changes to
blood and bronchoalveolar lavage biomarkers, and lung function
abnormalities in asthma. Clin Exp Allergy. 50:15–28. 2020.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhang L, Hi X, Yao L, J. W and W. Q: The
effect of interleukin4 on ADAM33 gene expression in airway wall
vascular smooth muscle cells. Journal of Xinjiang Medical
University. 39:265–269. 2016.PubMed/NCBI
|
19
|
Isenovic ER, Kedees MH, Tepavcevic S,
Milosavljevic T, Koricanac G, Trpkovic A and Marche P: Role of
PI3K/AKT, cPLA2 and ERK1/2 signaling pathways in insulin regulation
of vascular smooth muscle cells proliferation. Cardiovasc Hematol
Disord Drug Targets. 9:172–180. 2009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Chae IH, Park KW, Kim HS and Oh BH: Nitric
oxide-induced apoptosis is mediated by Bax/Bcl-2 gene expression,
transition of cytochrome c, and activation of caspase-3 in rat
vascular smooth muscle cells. Clin Chim Acta. 341:83–91. 2004.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Lin F, Song A, Wu J, Jiang X, Long J, Chen
J, Duan Y, Shi Y and Deng L: ADAM33 protein expression and the
mechanics of airway smooth muscle cells are highly correlated in
ovalbumin-sensitized rats. Mol Med Rep. 8:1209–1215. 2013.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Zhou J, Bai W, Liu Q, Cui J and Zhang W:
Silencing of ADAM33 restrains proliferation and induces apoptosis
of airway smooth muscle cells in ovalbumin-induced asthma model. J
Cell Biochem. Nov 18–2018.(Epub ahead of print).
|
23
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Tamhane AC: Statistical analysis of
designed experiments: Theory and applications. Higher Education
Press; Beijing: 2006
|
25
|
Dijkstra A, Postma DS, Noordhoek JA,
Lodewijk ME, Kauffman HF, ten Hacken NH and Timens W: Expression of
ADAMs (‘a disintegrin and metalloprotease’) in the human lung.
Virchows Arch. 454:441–449. 2009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Foley SC, Mogas AK, Olivenstein R, Fiset
PO, Chakir J, Bourbeau J, Ernst P, Lemière C, Martin JG and Hamid
Q: Increased expression of ADAM33 and ADAM8 with disease
progression in asthma. J Allergy Clin Immunol. 119:863–871. 2007.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Van Eerdewegh P, Little RD, Dupuis J, Del
Mastro RG, Falls K, Simon J, Torrey D, Pandit S, McKenny J,
Braunschweiger K, et al: Association of the ADAM33 gene with asthma
and bronchial hyperresponsiveness. Nature. 418:426–430. 2002.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Wen J, Muyesha P, Gong X, Hu X, Hao Y, Yan
F, Zang L and Wang J: Effect of γ-interferon on the expression of
ADAM33 gene in human airway wall vascular smooth muscle cells.
Journal of Xinjiang Medical University. 42:965–970. 2019.
|
29
|
Tripathi P, Awasthi S and Gao P: ADAM
metallopeptidase domain 33 (ADAM33): A promising target for asthma.
Mediators Inflamm. 2014:5720252014. View Article : Google Scholar : PubMed/NCBI
|
30
|
Fang L, Wu J, Huang T, Zhang P, Xin X and
Shi Y: TGF-β1 stimulates epithelial-mesenchymal transition mediated
by ADAM33. Exp Ther Med. 15:985–992. 2018.PubMed/NCBI
|
31
|
Yang Y, Wicks J, Haitchi HM, Powell RM,
Manuyakorn W, Howarth PH, Holgate ST and Davies DE: Regulation of a
disintegrin and metalloprotease-33 expression by transforming
growth factor-β. Am J Respir Cell Mol Biol. 46:633–640. 2012.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Pei QM, Jiang P, Yang M, Qian XJ, Liu JB,
Zheng H, Zhao LH and Kim SH: Upregulation of a disintegrin and
metalloproteinase-33 by VEGF in human airway smooth muscle cells:
Implications for asthma. Cell Cycle. 15:2819–2826. 2016. View Article : Google Scholar : PubMed/NCBI
|
33
|
Kim SH, Pei QM, Jiang P, Yang M, Qian XJ
and Liu JB: Effect of active vitamin D3 on VEGF-induced ADAM33
expression and proliferation in human airway smooth muscle cells:
Implications for asthma treatment. Respir Res. 18:72017. View Article : Google Scholar : PubMed/NCBI
|
34
|
Duan Y, Long J, Chen J, Jiang X, Zhu J,
Jin Y, Lin F, Zhong J, Xu R, Mao L and Deng L: Overexpression of
soluble ADAM33 promotes a hypercontractile phenotype of the airway
smooth muscle cell in rat. Exp Cell Res. 349:109–118. 2016.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Li W, Liang R, Huang H, Wu B and Zhong Y:
Effects of IFN-gamma on cell growth and the expression of ADAM33
gene in human embryonic lung Mrc-5 fibroblasts in vitro. J Asthma.
55:15–25. 2018. View Article : Google Scholar : PubMed/NCBI
|
36
|
Yu JS and Cui W: Proliferation, survival
and metabolism: The role of PI3K/AKT/mTOR signalling in
pluripotency and cell fate determination. Development.
143:3050–3060. 2016. View Article : Google Scholar : PubMed/NCBI
|
37
|
Singh S, Bodas M, Bhatraju NK, Pattnaik B,
Gheware A, Parameswaran PK, Thompson M, Freeman M, Mabalirajan U,
Gosens R, et al: Hyperinsulinemia adversely affects lung structure
and function. Am J Physiol Lung Cell Mol Physiol. 310:L837–L845.
2016. View Article : Google Scholar : PubMed/NCBI
|
38
|
Su X, Ren Y, Yu N, Kong L and Kang J:
Thymoquinone inhibits inflammation, neoangiogenesis and vascular
remodeling in asthma mice. Int Immunopharmacol. 38:70–80. 2016.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Edlich F: BCL-2 proteins and apoptosis:
Recent insights and unknowns. Biochem Biophys Res Commun.
500:26–34. 2018. View Article : Google Scholar : PubMed/NCBI
|
40
|
Liu WJ, Zhu SY, Chen YL, Wu X, Ni WJ, Chen
YF and Zhao L: The effects of leptin on apoptosis of airway smooth
muscle cells via the PI3K/Akt signaling pathway. Zhonghua Jie He He
Hu Xi Za Zhi. 35:915–918. 2012.(In Chinese). PubMed/NCBI
|
41
|
Wang S, Cheng Z and Chen X: Promotion of
PTEN on apoptosis through PI3K/Akt signal in vascular smooth muscle
cells of mice model of coronary heart disease. J Cell Biochem.
120:14636–14644. 2019. View Article : Google Scholar : PubMed/NCBI
|