1
|
Soria Lopez JA, Gonzalez HM and Leger GC:
Alzheimer's disease. Handb Clin Neurol. 167:231–255. 2019.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Tiwari S, Atluri V, Kaushik A, Yndart A
and Nair M: Alzheimer's disease: Pathogenesis, diagnostics, and
therapeutics. Int J Nanomedicine. 14:5541–5554. 2019. View Article : Google Scholar : PubMed/NCBI
|
3
|
Ferreira-Vieira TH, Guimaraes IM, Silva FR
and Ribeiro FM: Alzheimer's disease: Targeting the Cholinergic
System. Curr Neuropharmacol. 14:101–115. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Parsons MP and Raymond LA: Extrasynaptic
NMDA receptor involvement in central nervous system disorders.
Neuron. 82:279–293. 2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Wang R and Reddy PH: Role of glutamate and
NMDA receptors in Alzheimer's disease. J Alzheimers Dis.
57:1041–1048. 2017. View Article : Google Scholar : PubMed/NCBI
|
6
|
Sanhueza M and Lisman J: The CaMKII/NMDAR
complex as a molecular memory. Mol Brain. 6:102013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Wang D, Noda Y, Zhou Y, Nitta A, Nabeshima
T and Yu Q: Effects of sodium houttuyfonate on phosphorylation of
CaMK II, CREB and ERK 1/2 and expression of c-Fos in macrophages.
Int Immunopharmacol. 4:1083–1088. 2004. View Article : Google Scholar : PubMed/NCBI
|
8
|
Baek A, Park EJ, Kim SY, Nam BG, Kim JH,
Jun SW, Kim SH and Cho SR: High-Frequency repetitive magnetic
stimulation enhances the expression of brain-derived neurotrophic
factor through activation of Ca2+-calmodulin-dependent
protein kinase II-cAMP-response element-binding protein pathway.
Front Neurol. 9:2852018. View Article : Google Scholar : PubMed/NCBI
|
9
|
Zhang Z, Cao X, Bao X, Zhang Y, Xu Y and
Sha D: Cocaine- and amphetamine-regulated transcript protects
synaptic structures in neurons after ischemic cerebral injury.
Neuropeptides. 81:1020232020. View Article : Google Scholar : PubMed/NCBI
|
10
|
Islam R, Matsuzaki K, Sumiyoshi E, Hossain
ME, Hashimoto M, Katakura M, Sugimoto N and Shido O: Theobromine
improves working memory by activating the CaMKII/CREB/BDNF pathway
in rats. Nutrients. 11:8882019. View Article : Google Scholar : PubMed/NCBI
|
11
|
Ko HR, Ahn SY, Chang YS, Hwang I, Yun T,
Sung DK, Sung SI, Park WS and Ahn JY: Human UCB-MSCs treatment upon
intraventricular hemorrhage contributes to attenuate hippocampal
neuron loss and circuit damage through BDNF-CREB signaling. Stem
Cell Res Ther. 9:3262018. View Article : Google Scholar : PubMed/NCBI
|
12
|
Moir RD, Lathe R and Tanzi RE: The
antimicrobial protection hypothesis of Alzheimer's disease.
Alzheimers Dement. 14:1602–1614. 2018. View Article : Google Scholar : PubMed/NCBI
|
13
|
Rathinam VA and Fitzgerald KA:
Inflammasome complexes: Emerging mechanisms and effector functions.
Cell. 165:792–800. 2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Man SM and Kanneganti TD: Regulation of
inflammasome activation. Immunol Rev. 265:6–21. 2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Olsen I and Singhrao SK: Inflammasome
involvement in Alzheimer's disease. J Alzheimers Dis. 54:45–53.
2016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Zhao N, Sun C, Zheng M, Liu S and Shi R:
Amentoflavone suppresses amyloid β1–42 neurotoxicity in Alzheimer's
disease through the inhibition of pyroptosis. Life Sci.
239:1170432019. View Article : Google Scholar : PubMed/NCBI
|
17
|
La Rosa F, Saresella M, Marventano I,
Piancone F, Ripamonti E, Al-Daghri N, Bazzini C, Zoia CP, Conti E,
Ferrarese C and Clerici M: Stavudine reduces NLRP3 inflammasome
activation and modulates amyloid-β autophagy. J Alzheimers Dis.
72:401–412. 2019. View Article : Google Scholar : PubMed/NCBI
|
18
|
Wang S, Yuan YH, Chen NH and Wang HB: The
mechanisms of NLRP3 inflammasome/pyroptosis activation and their
role in Parkinson's disease. Int Immunopharmacol. 67:458–464. 2019.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Qiu Z, Lei S, Zhao B, Wu Y, Su W, Liu M,
Meng Q, Zhou B, Leng Y and Xia ZY: NLRP3 inflammasome
activation-mediated pyroptosis aggravates myocardial
ischemia/reperfusion injury in diabetic rats. Oxid Med Cell Longev.
2017:97432802017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Hickman S, Izzy S, Sen P, Morsett L and El
Khoury J: Microglia in neurodegeneration. Nat Neurosci.
21:1359–1369. 2018. View Article : Google Scholar : PubMed/NCBI
|
21
|
Hansen DV, Hanson JE and Sheng M:
Microglia in Alzheimer's disease. J Cell Biol. 217:459–472. 2018.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Orihuela R, McPherson CA and Harry GJ:
Microglial M1/M2 polarization and metabolic states. Br J Pharmacol.
173:649–665. 2016. View Article : Google Scholar : PubMed/NCBI
|
23
|
Sominsky L, De Luca S and Spencer SJ:
Microglia: Key players in neurodevelopment and neuronal plasticity.
Int J Biochem Cell Biol. 94:56–60. 2018. View Article : Google Scholar : PubMed/NCBI
|
24
|
Wu Y, Dissing-Olesen L, MacVicar BA and
Stevens B: Microglia: Dynamic mediators of synapse development and
plasticity. Trends Immunol. 36:605–613. 2015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Corder G, Castro DC, Bruchas MR and
Scherrer G: Endogenous and exogenous opioids in pain. Annu Rev
Neurosci. 41:453–473. 2018. View Article : Google Scholar : PubMed/NCBI
|
26
|
Takahashi K, Nakagawasai O, Sugawara M,
Sato A, Nemoto W, Tadano T and Tan-No K: Kappa opioid receptor
agonist administration in olfactory bulbectomized mice restores
cognitive impairment through cholinergic neuron activation. Biol
Pharm Bull. 41:957–960. 2018. View Article : Google Scholar : PubMed/NCBI
|
27
|
D'Hooge R and De Deyn PP: Applications of
the Morris water maze in the study of learning and memory. Brain
Res Brain Res Rev. 36:60–90. 2001. View Article : Google Scholar
|
28
|
Garthe A and Kempermann G: An old test for
new neurons: Refining the Morris water maze to study the functional
relevance of adult hippocampal neurogenesis. Front Neurosci.
7:632013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Meldrum BS: Glutamate as a
neurotransmitter in the brain: Review of physiology and pathology.
J Nutr. 130 (Suppl 4S):1007S–1015S. 2000. View Article : Google Scholar : PubMed/NCBI
|
30
|
Colombo MN and Francolini M: Glutamate at
the vertebrate neuromuscular junction: From modulation to
neurotransmission. Cells. 8:9962019. View Article : Google Scholar : PubMed/NCBI
|
31
|
Man SM, Karki R and Kanneganti TD:
Molecular mechanisms and functions of pyroptosis, inflammatory
caspases and inflammasomes in infectious diseases. Immunol Rev.
277:61–75. 2017. View Article : Google Scholar : PubMed/NCBI
|
32
|
Takemoto-Kimura S, Suzuki K, Horigane SI,
Kamijo S, Inoue M, Sakamoto M, Fujii H and Bito H: Calmodulin
kinases: Essential regulators in health and disease. J Neurochem.
141:808–818. 2017. View Article : Google Scholar : PubMed/NCBI
|
33
|
Waldhoer M, Bartlett SE and Whistler JL:
Opioid receptors. Annu Rev Biochem. 73:953–990. 2004. View Article : Google Scholar : PubMed/NCBI
|
34
|
Ding YQ, Kaneko T, Nomura S and Mizuno N:
Immunohistochemical localization of mu-opioid receptors in the
central nervous system of the rat. J Comp Neurol. 367:375–402.
1996. View Article : Google Scholar : PubMed/NCBI
|
35
|
Baumann MH, Majumdar S, Le Rouzic V,
Hunkele A, Uprety R, Huang XP, Xu J, Roth BL, Pan YX and Pasternak
GW: Pharmacological characterization of novel synthetic opioids
(NSO) found in the recreational drug marketplace.
Neuropharmacology. 134((Pt A)): 101–107. 2018. View Article : Google Scholar : PubMed/NCBI
|
36
|
Beck TC, Hapstack MA, Beck KR and Dix TA:
Therapeutic potential of kappa opioid agonists. Pharmaceuticals
(Basel). 12:952019. View Article : Google Scholar : PubMed/NCBI
|
37
|
Wang Q, Sun Y, Li J, Xing W, Zhang S, Gu
X, Feng N, Zhao L, Fan R, Wang Y, et al: Quaternary ammonium salt
of U50488H, a new κ-opioid receptor agonist, protects rat heart
against ischemia/reperfusion injury. Eur J Pharmacol. 737:177–184.
2014. View Article : Google Scholar : PubMed/NCBI
|
38
|
Ding S, Xu Z, Yang J, Liu L, Huang X, Wang
X and Zhuge Q: The involvement of the decrease of astrocytic Wnt5a
in the cognitive decline in minimal hepatic encephalopathy. Mol
Neurobiol. 54:7949–7963. 2017. View Article : Google Scholar : PubMed/NCBI
|
39
|
Zhang L, Chen ZW, Yang SF, Shaer M, Wang
Y, Dong JJ and Jiapaer B: MicroRNA-219 decreases hippocampal
long-term potentiation inhibition and hippocampal neuronal cell
apoptosis in type 2 diabetes mellitus mice by suppressing the NMDAR
signaling pathway. CNS Neurosci Ther. 25:69–77. 2019. View Article : Google Scholar : PubMed/NCBI
|
40
|
Shonesy BC, Jalan-Sakrikar N, Cavener VS
and Colbran RJ: CaMKII: A molecular substrate for synaptic
plasticity and memory. Prog Mol Biol Transl Sci. 122:61–87. 2014.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Ahmed T and Frey JU: Plasticity-specific
phosphorylation of CaMKII, MAP-kinases and CREB during late-LTP in
rat hippocampal slices in vitro. Neuropharmacology. 49:477–492.
2005. View Article : Google Scholar : PubMed/NCBI
|
42
|
Li X, Sun Y, Jin Q, Song D and Diao Y:
Kappa opioid receptor agonists improve postoperative cognitive
dysfunction in rats via the JAK2/STAT3 signaling pathway. Int J Mol
Med. 44:1866–1876. 2019.PubMed/NCBI
|