1
|
Nalysnyk L, Cid-Ruzafa J, Rotella P and
Dirk E: Incidence and prevalence of idiopathic pulmonary fibrosis:
Review of the literature. Eur Respir Rev. 21:355–361. 2012.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Rydell-Törmänen K, Andréasson K,
Hesselstrand R, Risteli J, Heinegård D, Saxne T and
Westergren-Thorsson G: Extracellular matrix alterations and acute
inflammation; developing in parallel during early induction of
pulmonary fibrosis. Lab Invest. 92:917–925. 2012. View Article : Google Scholar
|
3
|
Wynn TA and Ramalingam TR: Mechanisms of
fibrosis: Therapeutic translation for fibrotic disease. Nat Med.
18:1028–1040. 2012. View
Article : Google Scholar : PubMed/NCBI
|
4
|
King TE, Pardo A and Selman M: Idiopathic
pulmonary fibrosis. Lancet. 378:1949–1961. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Richeldi L, Collard HR and Jones MG:
Idiopathic pulmonary fibrosis. Lancet. 389:1941–1952. 2017.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Wang YC, Liu JS, Tang HK, Nie J, Zhu JX,
Wen LL and Guo QL: miR-221 targets HMGA2 to inhibit
bleomycin-induced pulmonary fibrosis by regulating
TGF-β1/Smad3-induced EMT. Int J Mol Med. 38:1208–1216. 2016.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Willis BC and Borok Z: TGF-beta-induced
EMT: Mechanisms and implications for fibrotic lung disease. Am J
Physiol Lung Cell Mol Physiol. 293:L525–L534. 2007. View Article : Google Scholar : PubMed/NCBI
|
8
|
Stefani G and Slack FJ: Small non-coding
RNAs in animal development. Nat Rev Mol Cell Biol. 9:219–230. 2008.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Gai YP, Zhao HN, Zhao YN, Zhu BS, Yuan SS,
Li S, Guo FY and Ji XL: MiRNA-seq-based profiles of miRNAs in
mulberry phloem sap provide insight into the pathogenic mechanisms
of mulberry yellow dwarf disease. Sci Rep. 8:8122018. View Article : Google Scholar : PubMed/NCBI
|
10
|
Miao C, Xiong Y, Zhang G and Chang J:
MicroRNAs in idiopathic pulmonary fibrosis, new research progress
and their pathophysiological implication. Exp Lung Res. 44:178–190.
2018. View Article : Google Scholar : PubMed/NCBI
|
11
|
Liang H, Gu Y, Li T, Zhang Y, Huangfu L,
Hu M, Zhao D, Chen Y, Liu S, Dong Y, et al: Integrated analyses
identify the involvement of microRNA-26a in epithelial-mesenchymal
transition during idiopathic pulmonary fibrosis. Cell Death Dis.
5:e12382014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Wang F, Zhang X, Zhong X, Zhang M, Guo M,
Yang L, Li Y, Zhao J and Yu S: Effect of miR-483-5p on apoptosis of
lung cancer cells through targeting of RBM5. Int J Clin Exp Pathol.
11:3147–3156. 2018.PubMed/NCBI
|
13
|
Chouri E, Servaas NH, Bekker CPJ, Affandi
AJ, Cossu M, Hillen MR, Angiolilli C, Mertens JS, van den Hoogen
LL, Silva-Cardoso SL, et al: Serum microRNA screening and
functional studies reveal miR-483-5p as a potential driver of
fibrosis in systemic sclerosis. J Autoimmun. 89:162–170. 2018.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Tang H, He H, Ji H, Gao L, Mao J, Liu J,
Lin H and Wu T: Tanshinone IIA ameliorates bleomycin-induced
pulmonary fibrosis and inhibits transforming growth
factor-beta-β-dependent epithelial to mesenchymal transition. J
Surg Res. 197:167–175. 2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative Pcr and
the 2(-delta delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Lin X, Yang B, Liu W, Tan X, Wu F, Hu P,
Jiang T, Bao Z, Yuan J, Qiang B, et al: Interplay between PCBP2 and
miRNA modulates ARHGDIA expression and function in glioma migration
and invasion. Oncotarget. 7:19483–19498. 2016. View Article : Google Scholar : PubMed/NCBI
|
17
|
Hall A: Rho GTPases and the control of
cell behaviour. Biochem Soc Trans. 33:891–895. 2005. View Article : Google Scholar : PubMed/NCBI
|
18
|
Castellano E and Downward J: RAS
Interaction with PI3K: More than just another effector pathway.
Genes Cancer. 2:261–274. 2011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Strieter RM and Mehrad B: New mechanisms
of pulmonary fibrosis. Chest. 136:1364–1370. 2009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Tomankova T, Petrek M and Kriegova E:
Involvement of microRNAs in physiological and pathological
processes in the lung. Respir Res. 11:1592010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Rajasekaran S, Rajaguru P and Sudhakar
Gandhi PS: MicroRNAs as potential targets for progressive pulmonary
fibrosis. Front Pharmacol. 6:2542015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Chen Y, Zhang Q, Zhou Y, Yang Z and Tan M:
Inhibition of miR-182-5p attenuates pulmonary fibrosis via
TGF-β/Smad pathway. Hum Exp Toxicol. 39:683–695. 2019. View Article : Google Scholar : PubMed/NCBI
|
23
|
Stone RC, Pastar I, Ojeh N, Chen V, Liu S,
Garzon KI and Tomic-Canic M: Epithelial-mesenchymal transition in
tissue repair and fibrosis. Cell Tissue Res. 365:495–506. 2016.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhang C, Zhu X, Hua Y, Zhao Q, Wang K,
Zhen L, Wang G, Lü J, Luo A, Cho WC, et al: YY1 mediates
TGF-β1-induced EMT and pro-fibrogenesis in alveolar epithelial
cells. Respir Res. 20:2492019. View Article : Google Scholar : PubMed/NCBI
|
25
|
Chapman HA: Epithelial-mesenchymal
interactions in pulmonary fibrosis. Annu Rev Physiol. 73:413–435.
2011. View Article : Google Scholar : PubMed/NCBI
|
26
|
Mason RJ, Walker SR, Shields BA, Henson JE
and Williams MC: Identification of rat alveolar type II epithelial
cells with a tannic acid and polychrome stain. Am Rev Respir Dis.
131:786–788. 1985.PubMed/NCBI
|
27
|
Foster KA, Oster CG, Mayer MM, Avery ML
and Audus KL: Characterization of the A549 cell line as a type II
pulmonary epithelial cell model for drug metabolism. Exp Cell Res.
243:359–366. 1998. View Article : Google Scholar : PubMed/NCBI
|
28
|
Tan X, Dagher H, Hutton CA and Bourke JE:
Effects of PPAR gamma ligands on TGF-beta1-induced
epithelial-mesenchymal transition in alveolar epithelial cells.
Respir Res. 11:212010. View Article : Google Scholar : PubMed/NCBI
|
29
|
Kasai H, Allen JT, Mason RM, Kamimura T
and Zhang Z: TGF-beta1 induces human alveolar epithelial to
mesenchymal cell transition (EMT). Respir Res. 6:562005. View Article : Google Scholar : PubMed/NCBI
|
30
|
Yu H, Königshoff M, Jayachandran A,
Handley D, Seeger W, Kaminski N and Eickelberg O: Transgelin is a
direct target of TGF-beta/Smad3-dependent epithelial cell migration
in lung fibrosis. FASEB J. 22:1778–1789. 2008. View Article : Google Scholar : PubMed/NCBI
|
31
|
Ando S, Otani H, Yagi Y, Kawai K, Araki H,
Fukuhara S and Inagaki C: Proteinase-activated receptor 4
stimulation-induced epithelial-mesenchymal transition in alveolar
epithelial cells. Respir Res. 8:312007. View Article : Google Scholar : PubMed/NCBI
|
32
|
Zhu Y, Tan J, Xie H, Wang J, Meng X and
Wang R: HIF-1α regulates EMT via the Snail and β-catenin pathways
in paraquat poisoning-induced early pulmonary fibrosis. J Cell Mol
Med. 20:688–697. 2016. View Article : Google Scholar : PubMed/NCBI
|
33
|
Cho HJ, Kim JT, Baek KE, Kim BY and Lee
HG: Regulation of Rho GTPases by RhoGDIs in Human Cancers. Cells.
8:10372019. View Article : Google Scholar : PubMed/NCBI
|
34
|
Leonard D, Hart MJ, Platko JV, Eva A,
Henzel W, Evans T and Cerione RA: The identification and
characterization of a GDP-dissociation inhibitor (GDI) for the
CDC42Hs protein. J Biol Chem. 267:22860–22868. 1992. View Article : Google Scholar : PubMed/NCBI
|
35
|
Song Q, Xu Y, Yang C, Chen Z, Jia C, Chen
J, Zhang Y, Lai P, Fan X, Zhou X, et al: miR-483-5p promotes
invasion and metastasis of lung adenocarcinoma by targeting RhoGDI1
and ALCAM. Cancer Res. 74:3031–3042. 2014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Jiang WG, Watkins G, Lane J, Cunnick GH,
Douglas-Jones A, Mokbel K and Mansel RE: Prognostic value of rho
GTPases and rho guanine nucleotide dissociation inhibitors in human
breast cancers. Clin Cancer Res. 9:6432–6440. 2003.PubMed/NCBI
|
37
|
Kotelevets L and Chastre E: Rac1
signaling: From intestinal homeostasis to colorectal cancer
metastasis. Cancers (Basel). 12:6652020. View Article : Google Scholar : PubMed/NCBI
|
38
|
Tan WJ, Tan QY, Wang T, Lian M, Zhang L
and Cheng ZS: Calpain 1 regulates TGF-β1-induced
epithelial-mesenchymal transition in human lung epithelial cells
via PI3K/Akt signaling pathway. Am J Transl Res. 9:1402–1409.
2017.PubMed/NCBI
|
39
|
Yang W, Li X, Qi S, Li X, Zhou K, Qing S,
Zhang Y and Gao MQ: lncRNA H19 is involved in TGF-β1-induced
epithelial to mesenchymal transition in bovine epithelial cells
through PI3K/AKT Signaling Pathway. PeerJ. 5:e39502017. View Article : Google Scholar : PubMed/NCBI
|
40
|
Bokoch GM, Vlahos CJ, Wang Y, Knaus UG and
Traynor-Kaplan AE: Rac GTPase interacts specifically with
phosphatidylinositol 3-kinase. Biochem J. 315:775–779. 1996.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Feng J, Wang X, Zhu W, Chen S and Feng C:
MicroRNA-630 suppresses Epithelial-to-Mesenchymal transition by
regulating FoxM1 in gastric cancer cells. Biochemistry Mosc.
82:707–714. 2017. View Article : Google Scholar : PubMed/NCBI
|
42
|
Shen HJ, Sun YH, Zhang SJ, Jiang JX, Dong
XW, Jia YL, Shen J, Guan Y, Zhang LH, Li FF, et al: Cigarette
smoke-induced alveolar epithelial-mesenchymal transition is
mediated by Rac1 activation. Biochim Biophys Acta. 1840:1838–1849.
2014. View Article : Google Scholar : PubMed/NCBI
|
43
|
Qu H, Sun H and Wang X: Neogenin-1
promotes cell proliferation, motility, and adhesion by
Up-regulation of Zinc Finger E-Box binding homeobox 1 via
activating the Rac1/PI3K/AKT pathway in gastric cancer cells. Cell
Physiol Biochem. 48:1457–1467. 2018. View Article : Google Scholar : PubMed/NCBI
|
44
|
Xu SW, Liu S, Eastwood M, Sonnylal S,
Denton CP, Abraham DJ and Leask A: Rac inhibition reverses the
phenotype of fibrotic fibroblasts. PLoS One. 4:e74382009.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Shi-Wen X, Chen Y, Denton CP, Eastwood M,
Renzoni EA, Bou-Gharios G, Pearson JD, Dashwood M, du Bois RM,
Black CM, et al: Endothelin-1 promotes myofibroblast induction
through the ETA receptor via a rac/phosphoinositide
3-kinase/Akt-dependent pathway and is essential for the enhanced
contractile phenotype of fibrotic fibroblasts. Mol Biol Cell.
15:2707–2719. 2004. View Article : Google Scholar : PubMed/NCBI
|