1
|
Beitz JM: Parkinson's disease: A review.
Front Biosci (Schol Ed). 6:65–74. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Tysnes OB and Storstein A: Epidemiology of
Parkinson's disease. J Neural Transm (Vienna). 124:901–905. 2017.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Schrag A, Hovris A, Morley D, Quinn N and
Jahanshahi M: Young-vs. older-onset Parkinson's disease: Impact of
disease and psychosocial consequences. Mov Disord. 18:1250–1256.
2003. View Article : Google Scholar : PubMed/NCBI
|
4
|
Stern M, Dulaney E, Gruber SB, Golbe L,
Bergen M, Hurtig H, Gollomp S and Stolley P: The epidemiology of
Parkinson's disease: A case-control study of young-onset and
old-onset patients. Arch Neurol. 48:903–907. 1991. View Article : Google Scholar : PubMed/NCBI
|
5
|
Elbaz A, Carcaillon L, Kab S and Moisan F:
Epidemiology of Parkinson's disease. Rev Neurol (Paris). 172:14–26.
2016. View Article : Google Scholar : PubMed/NCBI
|
6
|
Schneider RB, Iourinets J and Richard IH:
Parkinson's disease psychosis: Presentation, diagnosis and
management. Neurodegener Dis Manag. 7:365–376. 2017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Orimo S: New development of diagnosis and
treatment for Parkinson's disease. Rinsho Shinkeigaku. 57:259–273.
2017.(In Japanese). View Article : Google Scholar : PubMed/NCBI
|
8
|
Salzman J: Circular RNA Expression: Its
potential regulation and function. Trends Genet. 32:309–316. 2016.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Hsiao KY, Sun HS and Tsai SJ: Circular
RNA-New member of noncoding RNA with novel functions. Exp Biol Med
(Maywood). 242:1136–1341. 2017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Jahani S, Nazeri E, Majidzadeh AK, Jahani
M and Esmaeili R: Circular RNA; a new biomarker for breast cancer:
A systematic review. J Cell Physiol. 235:5501–5510. 2020.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhang HD, Jiang LH, Sun DW, Hou JC and Ji
ZL: CircRNA: A novel type of biomarker for cancer. Breast Cancer.
25:1–7. 2018. View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhao ZJ and Shen J: Circular RNA
participates in the carcinogenesis and the malignant behavior of
cancer. RNA Biol. 14:514–521. 2017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Wu F, Han B, Wu S, Yang L, Leng S, Li M,
Liao J, Wang G, Ye Q, Zhang Y, et al: Circular RNA TLK1
aggravates neuronal injury and neurological deficits after ischemic
stroke via miR-335-3p/TIPARP. J Neurosci. 39:7369–7393. 2019.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Bai Y, Zhang Y, Han B, Yang L, Chen X,
Huang R, Wu F, Chao J, Liu P, Hu G, et al: Circular RNA DLGAP4
ameliorates ischemic stroke outcomes by targeting mir-143 to
regulate endothelial-mesenchymal transition associated with
blood-brain barrier integrity. J Neurosci. 38:32–50. 2018.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Gong GH, An FM, Wang Y, Bian M, Wang D and
Wei CX: Comprehensive Circular RNA profiling reveals the regulatory
role of the CircRNA-0067835/miR-155 pathway in temporal lobe
epilepsy. Cell Physiol Biochem. 51:1399–1409. 2018. View Article : Google Scholar : PubMed/NCBI
|
16
|
Akhter R: Circular RNA and Alzheimer's
disease. Adv Exp Med Biol. 1087:239–243. 2018. View Article : Google Scholar : PubMed/NCBI
|
17
|
Yang H, Wang H, Shang H, Chen X, Yang S,
Qu Y, Ding J and Li X: Circular RNA circ_0000950 promotes neuron
apoptosis, suppresses neurite outgrowth and elevates inflammatory
cytokines levels via directly sponging miR-103 in Alzheimer's
disease. Cell Cycle. 18:2197–2214. 2019. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhao Y and Jing Z: CircSAMD4A accelerates
cell proliferation of osteosarcoma by sponging miR-1244 and
regulating MDM2 mRNA expression. Biochem Biophys Res Commun.
516:102–111. 2019. View Article : Google Scholar : PubMed/NCBI
|
19
|
Liu W, Zhang Q, Zhang J, Pan W, Zhao J and
Xu Y: Long non-coding RNA MALAT1 contributes to cell apoptosis by
sponging miR-124 in Parkinson disease. Cell Biosci. 7:192017.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Paschall AV and Liu K: An orthotopic mouse
model of spontaneous breast cancer metastasis. J Vis Exp.
540402016.PubMed/NCBI
|
21
|
Creamer-Hente MA, Lao FK, Dragos ZP and
Waterman LL: Sex- and Strain-related differences in the stress
response of Mice to CO2 euthanasia. J Am Assoc Lab Anim
Sci. 57:513–519. 2018. View Article : Google Scholar : PubMed/NCBI
|
22
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Kim J, Kundu M, Viollet B and Guan KL:
AMPK and mTOR regulate autophagy through direct phosphorylation of
Ulk1. Nat Cell Biol. 13:132–141. 2011. View Article : Google Scholar : PubMed/NCBI
|
24
|
Hirsch L, Jette N, Frolkis A, Steeves T
and Pringsheim T: The incidence of Parkinson's disease: A
systematic review and meta-analysis. Neuroepidemiology. 46:292–300.
2016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Shalash AS, Hamid E, Elrassas HH, Bedair
AS, Abushouk AI, Khamis M, Hashim M, Ahmed NS, Ashour S and
Elbalkimy M: Non-motor symptoms as predictors of quality of life in
egyptian patients with parkinson's disease: A cross-sectional study
using a culturally adapted 39-item parkinson's disease
questionnaire. Front Neurol. 9:3572018. View Article : Google Scholar : PubMed/NCBI
|
26
|
Cui B, Guo X, You Y and Fu R: Farrerol
attenuates MPP+ -induced inflammatory response by TLR4 signaling in
a microglia cell line. Phytother Res. 33:1134–1141. 2019.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Malley KR, Koroleva O, Miller I,
Sanishvili R, Jenkins CM, Gross RW and Korolev S: The structure of
iPLA2 β reveals dimeric active sites and suggests
mechanisms of regulation and localization. Nat Commun. 9:7652018.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Suresh SN, Chavalmane AK, Dj V,
Yarreiphang H, Rai S, Paul A, Clement JP, Alladi PA and Manjithaya
R: A novel autophagy modulator 6-Bio ameliorates SNCA/α-synuclein
toxicity. Autophagy. 13:1221–1234. 2017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Sanduzzi Zamparelli M, Compare D, Coccoli
P, Rocco A, Nardone OM, Marrone G, Gasbarrini A, Grieco A, Nardone
G and Miele L: The metabolic role of gut microbiota in the
development of nonalcoholic fatty liver disease and cardiovascular
disease. Int J Mol Sci. 17:12252016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Ramalingam M, Huh YJ and Lee YI: The
impairments of α-synuclein and mechanistic target of rapamycin in
rotenone-induced SH-SY5Y cells and mice model of Parkinson's
disease. Front Neurosci. 13:10282019. View Article : Google Scholar : PubMed/NCBI
|
31
|
Pupyshev AB, Tikhonova MA, Akopyan AA,
Tenditnik MV, Dubrovina NI and Korolenko TA: Therapeutic activation
of autophagy by combined treatment with rapamycin and trehalose in
a mouse MPTP-induced model of Parkinson's disease. Pharmacol
Biochem Behav. 177:1–11. 2019. View Article : Google Scholar : PubMed/NCBI
|
32
|
Ge G, Chen C, Guderyon MJ, Liu J, He Z, Yu
Y, Clark RA and Li S: Regulatable lentiviral hematopoietic stem
cell gene therapy in a mouse model of Parkinson's disease. Stem
Cells Dev. 27:995–1005. 2018. View Article : Google Scholar : PubMed/NCBI
|
33
|
de Campos PS, Kawamura L, Hasegawa K,
Kumei Y and Zeredo JL: Analysis of respiratory movements in a mouse
model of late Parkinson's disease submitted to stress. Respir
Physiol Neurobiol. 251:50–56. 2018. View Article : Google Scholar : PubMed/NCBI
|
34
|
Sugumar M, Sevanan M and Sekar S:
Neuroprotective effect of naringenin against MPTP-induced oxidative
stress. Int J Neurosci. 129:534–539. 2019. View Article : Google Scholar : PubMed/NCBI
|
35
|
Zhang X, Zhang Y, Li R, Zhu L, Fu B and
Yan T: Salidroside ameliorates Parkinson's disease by inhibiting
NLRP3-dependent pyroptosis. Aging (Albany NY). 12:9405–9426. 2020.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Sang Q, Liu X, Wang L, Qi L, Sun W, Wang
W, Wang W, Sun Y and Zhang H: Curcumin protects an SH-SY5Y cell
model of parkinson's disease against toxic injury by regulating
HSP90. Cell Physiol Biochem. 51:681–691. 2018. View Article : Google Scholar : PubMed/NCBI
|
37
|
Xicoy H, Wieringa B and Martens GJ: The
SH-SY5Y cell line in Parkinson's disease research: A systematic
review. Mol Neurodegener. 12:102017. View Article : Google Scholar : PubMed/NCBI
|
38
|
Zimmerman AJ, Hafez AK, Amoah SK,
Rodriguez BA, Dell'Orco M, Lozano E, Hartley BJ, Alural B, Lalonde
J, Chander P, et al: A psychiatric disease-related circular RNA
controls synaptic gene expression and cognition. Mol Psychiatry.
25:2712–2727. 2020. View Article : Google Scholar : PubMed/NCBI
|
39
|
Ayers D and Scerri C: Non-coding RNA
influences in dementia. Noncoding RNA Res. 3:188–194. 2018.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Feng Z, Zhang L, Wang S and Hong Q:
Circular RNA circDLGAP4 exerts neuroprotective effects via
modulating miR-134-5p/CREB pathway in Parkinson's disease. Biochem
Biophys Res Commun. 522:388–394. 2020. View Article : Google Scholar : PubMed/NCBI
|
41
|
Kumar L, Shamsuzzama, Jadiya P, Haque R,
Shukla S and Nazir A: Functional characterization of novel circular
RNA molecule, circzip-2 and its synthesizing gene zip-2 in C.
Elegans model of parkinson's disease. Mol Neurobiol.
55:6914–6926. 2018. View Article : Google Scholar : PubMed/NCBI
|
42
|
Xiao MS, Ai Y and Wilusz JE: Biogenesis
and functions of circular RNAs come into focus. Trends Cell Biol.
30:226–240. 2020. View Article : Google Scholar : PubMed/NCBI
|
43
|
Leggio L, Vivarelli S, L'Episcopo F,
Tirolo C, Caniglia S, Testa N, Marchetti B and Iraci N: microRNAs
in Parkinson's disease: From pathogenesis to novel diagnostic and
therapeutic approaches. Int J Mol Sci. 18:26982017. View Article : Google Scholar : PubMed/NCBI
|
44
|
Junn E, Lee KW, Jeong BS, Chan TW, Im JY
and Mouradian MM: Repression of alpha-synuclein expression and
toxicity by microRNA-7. Proc Natl Acad Sci USA. 106:13052–13057.
2009. View Article : Google Scholar : PubMed/NCBI
|
45
|
Lukiw WJ: Circular RNA (circRNA) in
Alzheimer's disease (AD). Front Genet. 4:3072013. View Article : Google Scholar : PubMed/NCBI
|
46
|
Hansen TB, Jensen TI, Clausen BH, Bramsen
JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function
as efficient microRNA sponges. Nature. 495:384–388. 2013.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Sang Q, Liu X, Wang L, Qi L, Sun W, Wang
W, Sun Y and Zhang H: CircSNCA downregulation by pramipexole
treatment mediates cell apoptosis and autophagy in Parkinson's
disease by targeting miR-7. Aging (Albany NY). 10:1281–1293. 2018.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Wu Y, Xu J, Xu J, Cheng J, Jiao D, Zhou C,
Dai Y and Chen Q: Lower serum levels of miR-29c-3p and miR-19b-3p
as biomarkers for alzheimer's disease. Tohoku J Exp Med.
242:129–136. 2017. View Article : Google Scholar : PubMed/NCBI
|
49
|
Zhang S, Jin J, Tian X and Wu L:
hsa-miR-29c-3p regulates biological function of colorectal cancer
by targeting SPARC. Oncotarget. 8:104508–104524. 2017. View Article : Google Scholar : PubMed/NCBI
|
50
|
Luo H, Zhu W, Mo W and Liang M:
High-glucose concentration aggravates TNF-alpha-induced cell
viability reduction in human CD146-positive periodontal ligament
cells via TNFR-1 gene demethylation. Cell Biol Int. 44:2383–2394.
2020. View Article : Google Scholar : PubMed/NCBI
|
51
|
Takagi H, Matsui Y, Hirotani S, Sakoda H,
Asano T and Sadoshima J: AMPK mediates autophagy during myocardial
ischemia in vivo. Autophagy. 3:405–407. 2007. View Article : Google Scholar : PubMed/NCBI
|
52
|
Lu C, Wang W, Jia Y, Liu X, Tong Z and Li
B: Inhibition of AMPK/autophagy potentiates parthenolide-induced
apoptosis in human breast cancer cells. J Cell Biochem.
115:1458–1466. 2014. View Article : Google Scholar : PubMed/NCBI
|
53
|
Gong X, Wang H, Ye Y, Shu Y, Deng Y, He X,
Lu G and Zhang S: miR-124 regulates cell apoptosis and autophagy in
dopaminergic neurons and protects them by regulating AMPK/mTOR
pathway in Parkinson's disease. Am J Transl Res. 8:2127–2137.
2016.PubMed/NCBI
|