1
|
Gerber Y, Weston SA, Enriquez-Sarano M,
Berardi C, Chamberlain AM, Manemann SM, Jiang R, Dunlay SM and
Roger VL: Mortality associated with heart failure after myocardial
infarction: A contemporary community perspective. Circ Heart Fail.
9:e0024602016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Barsheshet A, Moss AJ, Eldar M, Huang DT,
Hall WJ, Klein HU, McNitt S, Steinberg JS, Wilber DJ, Zareba W and
Goldenberg I: Time-Dependent benefit of preventive cardiac
resynchronization therapy after myocardial infarction. Eur Heart J.
32:1614–1621. 2011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Briceno N, Schuster A, Lumley M and Perera
D: Ischaemic cardiomyopathy: Pathophysiology, assessment and the
role of revascularisation. Heart. 102:397–406. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Tang TT, Zhu YC, Dong NG, Zhang S, Cai J,
Zhang LX, Han Y, Xia N, Nie SF, Zhang M, et al: Pathologic T-cell
response in ischaemic failing hearts elucidated by T-cell receptor
sequencing and phenotypic characterization. Eur Heart J.
40:3924–3933. 2019. View Article : Google Scholar : PubMed/NCBI
|
5
|
Swirski FK and Nahrendorf M: Leukocyte
behavior in atherosclerosis, myocardial infarction, and heart
failure. Science. 339:161–166. 2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Wang Z, Huang S, Sheng Y, Peng X, Liu H,
Jin N, Cai J, Shu Y, Li T, Li P, et al: Topiramate modulates
post-infarction inflammation primarily by targeting monocytes or
macrophages. Cardiovasc Res. 113:475–487. 2017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Yan X, Anzai A, Katsumata Y, Matsuhashi T,
Ito K, Endo J, Yamamoto T, Takeshima A, Shinmura K, Shen W, et al:
Temporal dynamics of cardiac immune cell accumulation following
acute myocardial infarction. J Mol Cell Cardiol. 62:24–35. 2013.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Prabhu SD and Frangogiannis NG: The
biological basis for cardiac repair after myocardial infarction:
From inflammation to fibrosis. Circ Res. 119:91–112. 2016.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Tang TT, Ding YJ, Liao YH, Yu X, Xiao H,
Xie JJ, Yuan J, Zhou ZH, Liao MY, Yao R, et al: Defective
circulating CD4CD25+Foxp3+CD127(low) regulatory T-cells in patients
with chronic heart failure. Cell Physiol Biochem. 25:451–458. 2010.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Tang TT, Zhu ZF, Wang J, Zhang WC, Tu X,
Xiao H, Du XL, Xia JH, Dong NG, Su W, et al: Impaired thymic export
and apoptosis contribute to regulatory T-cell defects in patients
with chronic heart failure. PLoS One. 6:e242722011. View Article : Google Scholar : PubMed/NCBI
|
11
|
Dominguez-Villar M and Hafler DA:
Regulatory T cells in autoimmune disease. Nat Immunol. 19:665–673.
2018. View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhu ZF, Tang TT, Dong WY, Li YY, Xia N,
Zhang WC, Zhou SF, Yuan J, Liao MY, Li JJ, et al: Defective
circulating CD4+LAP+ regulatory T cells in patients with dilated
cardiomyopathy. J Leukoc Biol. 97:797–805. 2015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Chen XH, Ruan CC, Ge Q, Ma Y, Xu JZ, Zhang
ZB, Lin JR, Chen DR, Zhu DL and Gao PJ: Deficiency of complement
C3a and C5a receptors prevents angiotensin II-induced hypertension
via regulatory T cells. Circ Res. 122:970–983. 2018. View Article : Google Scholar : PubMed/NCBI
|
14
|
Meiler S, Smeets E, Winkels H, Shami A,
Pascutti MF, Nolte MA, Beckers L, Weber C, Gerdes N and Lutgens E:
Constitutive GITR activation reduces atherosclerosis by promoting
regulatory CD4+ T-cell responses-brief report. Arterioscler Thromb
Vasc Biol. 36:1748–1752. 2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Flego D, Severino A, Trotta F, Previtero
M, Ucci S, Zara C, Massaro G, Pedicino D, Biasucci LM, Liuzzo G and
Crea F: Increased PTPN22 expression and defective CREB activation
impair regulatory T-cell differentiation in non-ST-segment
elevation acute coronary syndromes. J Am Coll Cardiol.
65:1175–1186. 2015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Tang TT, Yuan J, Zhu ZF, Zhang WC, Xiao H,
Xia N, Yan XX, Nie SF, Liu J, Zhou SF, et al: Regulatory T cells
ameliorate cardiac remodeling after myocardial infarction. Basic
Res Cardiol. 107:2322012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Meng X, Yang J, Dong M, Zhang K, Tu E, Gao
Q, Chen W, Zhang C and Zhang Y: Regulatory T cells in
cardiovascular diseases. Nat Rev Cardiol. 13:167–179. 2016.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Long R, You Y, Li W, Jin N, Huang S, Li T,
Liu K and Wang Z: Sodium tanshinone IIA sulfonate ameliorates
experimental coronary no-reflow phenomenon through down-regulation
of FGL2. Life Sci. 142:8–18. 2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Li WZ, Wang J, Long R, Su GH, Bukhory DK,
Dai J, Jin N, Huang SY, Jia P, Li T, et al: Novel antibody against
a glutamic acid-rich human fibrinogen-like protein 2-derived
peptide near Ser91 inhibits hfgl2 prothrombinase activity. PLoS
One. 9:e945512014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Shalev I, Liu H, Koscik C, Bartczak A,
Javadi M, Wong KM, Maknojia A, He W, Liu MF, Diao J, et al:
Targeted deletion of fgl2 leads to impaired regulatory T cell
activity and development of autoimmune glomerulonephritis. J
Immunol. 180:249–260. 2008. View Article : Google Scholar : PubMed/NCBI
|
21
|
Zhao Z, Yang C, Wang L, Li L, Zhao T, Hu
L, Rong R, Xu M and Zhu T: The regulatory T cell effector soluble
fibrinogen-like protein 2 induces tubular epithelial cell apoptosis
in renal transplantation. Exp Biol Med (Maywood). 239:193–201.
2014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Foerster K, Helmy A, Zhu Y, Khattar R,
Adeyi OA, Wong KM, Shalev I, Clark DA, Wong PY, Heathcote EJ, et
al: The novel immunoregulatory molecule FGL2: A potential biomarker
for severity of chronic hepatitis C virus infection. J Hepatol.
53:608–615. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Chan CW, Kay LS, Khadaroo RG, Chan MWC,
Lakatoo S, Young KJ, Zhang L, Gorczynski RM, Cattral M, Rotstein O
and Levy GA: Soluble fibrinogen-like protein 2/fibroleukin exhibits
immunosuppressive properties: Suppressing T cell proliferation and
inhibiting maturation of bone marrow-derived dendritic cells. J
Immunol. 170:4036–4044. 2003. View Article : Google Scholar : PubMed/NCBI
|
24
|
Liu K, Li T, Huang S, Long R, You Y, Liu J
and Wang Z: The reduced soluble fibrinogen-like protein 2 and
regulatory T cells in acute coronary syndrome. Exp Biol Med
(Maywood). 241:421–425. 2016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Ponikowski P, Voors AA, Anker SD, Bueno H,
Cleland John GF, Coats Andrew JS, Falk V, González-Juanatey JR,
Harjola VP, Jankowska EA, et al: 2016 ESC Guidelines for the
diagnosis and treatment of acute and chronic heart failure: The
task force for the diagnosis and treatment of acute and chronic
heart failure of the European Society of Cardiology (ESC).
Developed with the special contribution of the Heart Failure
Association (HFA) of the ESC. Eur J Heart Fail. 37:2129–2200. 2016.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Kasper IR, Apostolidis SA, Sharabi A and
Tsokos GC: Empowering regulatory T cells in autoimmunity. Trends
Mol Med. 22:784–797. 2016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Sharir R, Semo J, Shimoni S, Ben-Mordechai
T, Landa-Rouben N, Maysel-Auslender S, Shaish A, Entin-Meer M,
Keren G and George J: Experimental myocardial infarction induces
altered regulatory T cell hemostasis, and adoptive transfer
attenuates subsequent remodeling. PLoS One. 9:e1136532014.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Saxena A, Dobaczewski M, Rai V, Haque Z,
Chen W, Li N and Frangogiannis NG: Regulatory T cells are recruited
in the infarcted mouse myocardium and may modulate fibroblast
phenotype and function. Am J Physiol Heart Circ Physiol.
307:H1233–H1242. 2014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Ramjee V, Li D, Manderfield LJ, Liu F,
Engleka KA, Aghajanian H, Rodell CB, Lu W, Ho V, Wang T, et al:
Epicardial YAP/TAZ orchestrate an immunosuppressive response
following myocardial infarction. J Clin Invest. 127:899–911. 2017.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Lu L, Barbi J and Pan F: The regulation of
immune tolerance by FOXP3. Nat Rev Immunol. 17:703–717. 2017.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Weirather J, Hofmann UD, Beyersdorf N,
Ramos GC, Vogel B, Frey A, Ertl G, Kerkau T and Frantz S: Foxp3+
CD4+ T cells improve healing after myocardial infarction by
modulating monocyte/macrophage differentiation. Circ Res.
115:55–67. 2014. View Article : Google Scholar : PubMed/NCBI
|
32
|
Li N, Bian H, Zhang J, Li X, Ji X and
Zhang Y: The Th17/treg imbalance exists in patients with heart
failure with normal ejection fraction and heart failure with
reduced ejection fraction. Clin Chim Acta. 411:1963–1968. 2010.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Bartczak A, Chruscinski A, Mendicino M,
Liu H, Zhang J, He W, Amir AZ, Nguyen A, Khattar R, Sadozai H, et
al: Overexpression of fibrinogen-like protein 2 promotes tolerance
in a fully mismatched murine model of heart transplantation. Am J
Transplant. 16:1739–1750. 2016. View Article : Google Scholar : PubMed/NCBI
|
34
|
Tang Q, Boden EK, Henriksen KJ,
Bour-Jordan H, Bi M and Bluestone JA: Distinct roles of CTLA-4 and
TGF-beta in CD4+CD25+ regulatory T cell function. Eur J Immunol.
34:2996–3005. 2004. View Article : Google Scholar : PubMed/NCBI
|
35
|
Miyara M and Sakaguchi S: Natural
regulatory T cells: Mechanisms of suppression. Trends Mol Med.
13:108–116. 2007. View Article : Google Scholar : PubMed/NCBI
|
36
|
Mu J, Qu D, Bartczak A, Phillips MJ,
Manuel J, He W, Koscik C, Mendicino M, Zhang L, Clark DA, et al:
Fgl2 deficiency causes neonatal death and cardiac dysfunction
during embryonic and postnatal development in mice. Physiol
Genomics. 31:53–62. 2007. View Article : Google Scholar : PubMed/NCBI
|