1
|
Li X, Wang L and Ma H: Betaine alleviates
high glucose-induced mesangial cell proliferation by inhibiting
cell proliferation and extracellular matrix deposition via the
AKT/ERK1/2/p38 MAPK pathway. Mol Med Rep. 20:1754–1760.
2019.PubMed/NCBI
|
2
|
Hsieh AR, Huang YC, Yang YF, Lin HJ, Lin
JM, Chang YW, Wu CM, Liao WL and Tsai FJ: Lack of association of
genetic variants for diabetic retinopathy in Taiwanese patients
with diabetic nephropathy. BMJ Open Diabetes Res Care.
8:e0007272020. View Article : Google Scholar : PubMed/NCBI
|
3
|
Perkovic V, Jardine MJ, Neal B, Bompoint
S, Heerspink HJL, Charytan DM, Edwards R, Agarwal R, Bakris G, Bull
S, et al: Canagliflozin and renal outcomes in type 2 diabetes and
nephropathy. N Engl J Med. 380:2295–2306. 2019. View Article : Google Scholar : PubMed/NCBI
|
4
|
Zhang Q, Yang M, Xiao Y, Han Y, Yang S and
Sun L: Towards better drug repositioning: Targeted
immunoinflammatory therapy for diabetic nephropathy. Curr Med Chem.
8:1003–1024. 2021. View Article : Google Scholar : PubMed/NCBI
|
5
|
Oraby MA, El-Yamany MF, Safar MM, Assaf N
and Ghoneim HA: Amelioration of early markers of diabetic
nephropathy by linagliptin in fructose-streptozotocin-induced type
2 diabetic rats. Nephron. 141:273–286. 2019. View Article : Google Scholar : PubMed/NCBI
|
6
|
Li X, Zhu Q, Zheng R, Yan J, Wei M, Fan Y,
Deng Y and Zhong Y: Puerarin attenuates diabetic nephropathy by
promoting autophagy in podocytes. Front Physiol. 11:732020.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Yang C, Chen XC, Li ZH, Wu HL, Jing KP,
Huang XR, Ye L, Wei B, Lan HY and Liu HF: SMAD3 promotes autophagy
dysregulation by triggering lysosome depletion in tubular
epithelial cells in diabetic nephropathy. Autophagy. 10:1–20. 2020.
View Article : Google Scholar
|
8
|
Kim JH, Kim KM, Jeong JU, Shin JH, Shin JM
and Bang KT: Nrf2-Heme oxygenase-1 modulates autophagy and inhibits
apoptosis triggered by elevated glucose levels in renal tubule
cells. Kidney Res Clin Pract. 38:318–325. 2019. View Article : Google Scholar : PubMed/NCBI
|
9
|
Cao T, Xu R, Xu Y, Liu Y, Qi D and Wan Q:
The protective effect of cordycepin on diabetic nephropathy through
autophagy induction in vivo and in vitro. Int Urol Nephrol.
51:1883–1892. 2019. View Article : Google Scholar : PubMed/NCBI
|
10
|
Dai H, Liu Q and Liu B: Research progress
on mechanism of podocyte depletion in diabetic nephropathy. J
Diabetes Res. 2017:26152862017. View Article : Google Scholar : PubMed/NCBI
|
11
|
Chen Y, Liu Q, Shan Z, Mi W, Zhao Y, Li M,
Wang B, Zheng X and Feng W: Catalpol ameliorates podocyte injury by
stabilizing cytoskeleton and enhancing autophagy in diabetic
nephropathy. Front Pharmacol. 10:14772019. View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhang MZ, Jang H and Nussinov R: The
structural basis for ras activation of PI3Kα lipid kinase. Phys
Chem Chem Phys. 21:12021–12028. 2019. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zhang X, Wang D, Liu B, Jin X, Wang X, Pan
J, Tu W and Shao Y: IMP3 accelerates the progression of prostate
cancer through inhibiting PTEN expression in a SMURF1-dependent
way. J Exp Clin Cancer Res. 39:1902020. View Article : Google Scholar : PubMed/NCBI
|
14
|
Clement E, Inuzuka H, Nihira NT, Wei W and
Toker A: Skp2-dependent reactivation of AKT drives resistance to
PI3K inhibitors. Sci Signal. 11:eaao38102018. View Article : Google Scholar : PubMed/NCBI
|
15
|
Chen XB, Sun Y, Wang BR and Wang HH:
Prognostic significance of autophagy-related genes beclin1 and LC3
in ovarian cancer: A meta-analysis. J Int Med Res.
48:3000605209682992020. View Article : Google Scholar : PubMed/NCBI
|
16
|
Yu H, Shao J, Huang R, Guan Y, Li G, Chen
S, Zhou F, Yao Q and Shen J: Targeting PTEN to regulate autophagy
and promote the repair of injured neurons. Brain Res Bull.
165:161–168. 2020. View Article : Google Scholar : PubMed/NCBI
|
17
|
Jung G, Roh J, Lee H, Gil M, Yoon DH, Suh
C, Jang S, Park CJ, Huh J and Park CS: Autophagic markers beclin1
and LC3 are associated with prognosis of multiple myeloma. Acta
Haematol. 134:17–24. 2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Ebrahim N, Ahmed IA, Hussien NI, Dessouky
AA, Farid AS, Elshazly AM, Mostafa O, Gazzar WBE, Sorour SM, Seleem
Y, et al: Mesenchymal stem cell-derived exosomes ameliorated
diabetic nephropathy by autophagy induction through the mTOR
signaling pathway. Cells. 7:2262018. View Article : Google Scholar : PubMed/NCBI
|
19
|
Fu L, Wu W, Sun X and Zhang P:
Glucocorticoids enhanced osteoclast autophagy through the
PI3K/Akt/mTOR signaling pathway. Calcif Tissue Int. 107:60–71.
2020. View Article : Google Scholar : PubMed/NCBI
|
20
|
Vurusaner B, Gargiulo S, Testa G, Gamba P,
Leonarduzzi G, Poli G and Basaga H: The role of autophagy in
survival response induced by 27-hydroxycholesterol in human
promonocytic cells. Redox Biol. 17:400–410. 2018. View Article : Google Scholar : PubMed/NCBI
|
21
|
Xu Q, Liu Y, Cong YB, Zheng YY, Zhang JP
and Shi H: Gene expression and microarray investigation of
dendrobium mixture as progressive therapy for the treatment of type
2 diabetes mellitus. Trop J Pharmaceutical Res. 12:195–201.
2013.
|
22
|
Lin X, Shi H, Cui Y, Wang X, Zhang J, Yu W
and Wei M: Dendrobium mixture regulates hepatic gluconeogenesis in
diabetic rats via the phosphoinositide-3-kinase/protein kinase B
signaling pathway. Exp Ther Med. 16:204–212. 2018.PubMed/NCBI
|
23
|
Nitulescu GM, Margina D, Juzenas P, Peng
Q, Olaru OT, Saloustros E, Fenga C, Spandidos DA, Libra M and
Tsatsakis AM: Akt inhibitors in cancer treatment: The long journey
from drug discovery to clinical use. Int J Oncol. 48:869–885. 2016.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Nitulescu GM, Van De Venter M, Nitulescu
G, Ungurianu A, Juzenas P, Peng Q, Olaru OT, Grădinaru D, Tsatsakis
A, Tsoukalas D, et al: The Akt pathway in oncology therapy and
beyond. Int J Oncol. 53:2319–2331. 2018.PubMed/NCBI
|
25
|
Brown MJ, Symonowicz C, Medina LV,
Bratcher NA, Buckmaster CA, Klein H and Anderson LC: Culture of
care: Organizational responsibilities. Management of Animal Care
and Use Programs in Research, Education, and Testing. 2nd edition.
Boca Raton (FL): CRC Press/Taylor & Francis; 2018, PubMed/NCBI
|
26
|
Tesch GH and Allen TJ: Rodent models of
streptozotocin-induced diabetic nephropathy. Nephrology (Carlton).
12:261–266. 2007. View Article : Google Scholar : PubMed/NCBI
|
27
|
Liu K, Yang Y, Zhou F, Xiao Y and Shi L:
Inhibition of PI3K/AKT/mTOR signaling pathway promotes autophagy
and relieves hyperalgesia in diabetic rats. Neuroreport.
31:644–649. 2020. View Article : Google Scholar : PubMed/NCBI
|
28
|
Zeng LF, Xiao Y and Sun L: A glimpse of
the mechanisms related to renal fibrosis in diabetic nephropathy.
Adv Exp Med Biol. 1165:49–79. 2019. View Article : Google Scholar : PubMed/NCBI
|
29
|
Qi C, Mao X, Zhang Z and Wu H:
Classification and differential diagnosis of diabetic nephropathy.
J Diabetes Res. 2017:86371382017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Dong Z, Sun Y, Wei G, Li S and Zhao Z:
Ergosterol ameliorates diabetic nephropathy by attenuating
mesangial cell proliferation and extracellular matrix deposition
via the TGF-β1/smad2 signaling pathway. Nutrients. 11:4832019.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Park CH, Hiratani K, Natazuka T and
Yokozawa T: Therapeutic effect of Chinese prescription Kangen-Karyu
in patients with diabetic nephropathy. Drug Discov Ther. 14:84–88.
2020. View Article : Google Scholar : PubMed/NCBI
|
32
|
Wang J, Ma Q, Li Y, Li P, Wang M, Wang T,
Wang C, Wang T and Zhao B: Research progress on Traditional Chinese
Medicine syndromes of diabetes mellitus. Biomed Pharmacother.
121:1095652020. View Article : Google Scholar : PubMed/NCBI
|
33
|
Cheng T, Ye J, Li H, Dong H, Xie N, Mi N,
Zhang Z, Zou J, Jin H and Zhang W: Hybrid multidimensional data
acquisition and data processing strategy for comprehensive
characterization of known, unknown and isomeric compounds from the
compound dan zhi tablet by UPLC-TWIMS-QTOFMS. Rsc Advances.
9:8714–8727. 2019. View Article : Google Scholar : PubMed/NCBI
|
34
|
Shen H, Qu Z, Harata-Lee Y, Aung TN, Cui
J, Wang W, Kortschak RD and Adelson DL: Understanding the
mechanistic contribution of herbal extracts in compound kushen
injection with transcriptome analysis. Front Oncol. 9:6322019.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Tian HY, Yang JB, Xie ZC and Liu JL:
Gliquidone alleviates diabetic nephropathy by inhibiting
notch/snail signaling pathway. Cell Physiol Biochem. 51:2085–2097.
2018. View Article : Google Scholar : PubMed/NCBI
|
36
|
Kim H, Dusabimana T, Kim SR, Je J, Jeong
K, Kang MC, Cho KM, Kim HJ and Park SW: Supplementation of
abelmoschus manihot ameliorates diabetic nephropathy and hepatic
steatosis by activating autophagy in mice. Nutrients. 10:17032018.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Liu WJ, Huang WF, Ye L, Chen RH, Yang C,
Wu HL, Pan QJ and Liu HF: The activity and role of autophagy in the
pathogenesis of diabetic nephropathy. Eur Rev Med Pharmacol Sci.
22:3182–3189. 2018.PubMed/NCBI
|
38
|
Tu Q, Li Y, Jin J, Jiang X, Ren Y and He
Q: Curcumin alleviates diabetic nephropathy via inhibiting podocyte
mesenchymal transdifferentiation and inducing autophagy in rats and
MPC5 cells. Pharm Biol. 57:778–786. 2019. View Article : Google Scholar : PubMed/NCBI
|
39
|
Jiang Y, Zhao Y, Zhu X, Liu Y, Wu B, Guo
Y, Liu B and Zhang X: Effects of autophagy on macrophage adhesion
and migration in diabetic nephropathy. Ren Fail. 41:682–690. 2019.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Wu W, Zhang M, Liu Q, Xue L, Li Y and Ou
S: Piwil 2 gene transfection changes the autophagy status in a rat
model of diabetic nephropathy. Int J Clin Exp Pathol.
8:10734–10742. 2015.PubMed/NCBI
|
41
|
Ribback S, Cigliano A, Kroeger N, Pilo MG,
Terracciano L, Burchardt M, Bannasch P, Calvisi DF and Dombrowski
F: PI3K/AKT/mTOR pathway plays a major pathogenetic role in
glycogen accumulation and tumor development in renal distal tubules
of rats and men. Oncotarget. 6:13036–13048. 2015. View Article : Google Scholar : PubMed/NCBI
|
42
|
Huang C, Lin MZ, Cheng D, Braet F, Pollock
CA and Chen XM: KCa3.1 mediates dysfunction of tubular autophagy in
diabetic kidneys via PI3k/Akt/mTOR signaling pathways. Sci Rep.
6:238842016. View Article : Google Scholar : PubMed/NCBI
|
43
|
Yang F, Qu Q, Zhao C, Liu X, Yang P, Li Z,
Han L and Shi X: Paecilomyces cicadae-fermented Radix astragali
activates podocyte autophagy by attenuating PI3K/AKT/mTOR pathways
to protect against diabetic nephropathy in mice. Biomed
Pharmacother. 129:1104792020. View Article : Google Scholar : PubMed/NCBI
|
44
|
Zhang Q, Wang X, Cao S, Sun Y, He X, Jiang
B, Yu Y, Duan J, Qiu F and Kang N: Berberine represses human
gastric cancer cell growth in vitro and in vivo by inducing
cytostatic autophagy via inhibition of MAPK/mTOR/p70S6K and akt
signaling pathways. Biomed Pharmacother. 128:1102452020. View Article : Google Scholar : PubMed/NCBI
|
45
|
Li D, Lu Z, Xu Z, Ji J, Zheng Z, Lin S and
Yan T: Spironolactone promotes autophagy via inhibiting
PI3K/AKT/mTOR signalling pathway and reduce adhesive capacity
damage in podocytes under mechanical stress. Biosci Rep.
36:e003552016. View Article : Google Scholar : PubMed/NCBI
|
46
|
Yang P, Tian YM, Deng WX, Cai X, Liu WH,
Li L and Huang HY: Sijunzi decoction may decrease apoptosis via
stabilization of the extracellular matrix following cerebral
ischaemia-reperfusion in rats. Exp Ther Med. 18:2805–2812.
2019.PubMed/NCBI
|
47
|
Lee D, Lee SH, Lee M, Lee SH, Shin YJ, Lee
JY, Kim H, Kim YS and Song J: Effects of Siwu decoction on
chondrocyte proliferation of growth plate in adolescent rats. J
Ethnopharmacol. 236:108–113. 2019. View Article : Google Scholar : PubMed/NCBI
|