1
|
Fong DS, Aiello L, Gardner TW, King GL,
Blankenship G, Cavallerano JD, Ferris FL III and Klein R; American
Diabetes Association, : Diabetic retinopathy. Diabetes Care.
26:226–229. 2003. View Article : Google Scholar : PubMed/NCBI
|
2
|
Antonetti DA, Klein R and Gardner TW:
Diabetic retinopathy. N Engl J Med. 366:1227–1239. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Guariguata L, Whiting DR, Hambleton I,
Beagley J, Linnenkamp U and Shaw JE: Global estimates of diabetes
prevalence for 2013 and projections for 2035. Diabetes Res Clin
Pract. 103:137–149. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Kowluru RA and Mishra M: Oxidative stress,
mitochondrial damage and diabetic retinopathy. Biochim Biophys
Acta. 1852:2474–2483. 2015. View Article : Google Scholar : PubMed/NCBI
|
5
|
Barber AJ: Diabetic retinopathy: Recent
advances towards understanding neurodegeneration and vision loss.
Sci China Life Sci. 58:541–549. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Ung L, Pattamatta U, Carnt N,
Wilkinson-Berka JL, Liew G and White AJR: Oxidative stress and
reactive oxygen species: A review of their role in ocular disease.
Clin Sci. 131:2865–2883. 2017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Barber AJ, Lieth E, Khin SA, Antonetti DA,
Buchanan AG and Gardner TW: Neural apoptosis in the retina during
experimental and human diabetes: Early onset and effect of insulin.
J Clin Invest. 102:783–791. 1998. View
Article : Google Scholar : PubMed/NCBI
|
8
|
Oshitari T and Roy S: Diabetes: A
potential enhancer of retinal injury in rat retinas. Neurosc Lett.
390:25–30. 2005. View Article : Google Scholar : PubMed/NCBI
|
9
|
Luo D, Fan Y and Xu X: The effects of
aminoguanidine on retinopathy in STZ-induced diabetic rats. Bioorg
Med Chem Lett. 22:4386–4390. 2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Naderi A, Zahed R, Aghajanpour L, Amoli FA
and Lashay A: Long term features of diabetic retinopathy in
streptozotocin-induced diabetic Wistar rats. Exp Eye Res.
184:213–220. 2019. View Article : Google Scholar : PubMed/NCBI
|
11
|
Gal-Ben-Ari S, Barrera I, Ehrlich M and
Rosenblum K: PKR: A Kinase to Remember. Front Mol Neurosci.
11:4802019. View Article : Google Scholar : PubMed/NCBI
|
12
|
Bando Y, Onuki R, Katayama T, Manabe T,
Kudo T, Taira K and Tohyama M: Double-strand RNA dependent protein
kinase (PKR) is involved in the extrastriatal degeneration in
Parkinson's disease and Huntington's disease. Neurochem Int.
46:11–18. 2005. View Article : Google Scholar : PubMed/NCBI
|
13
|
Page G, Rioux Bilan A, Ingrand S,
Lafay-Chebassier C, Pain S, Perault Pochat MC, Bouras C, Bayer T
and Hugon J: Activated double-stranded RNA-dependent protein kinase
and neuronal death in models of Alzheimer's disease. Neuroscience.
139:1343–1354. 2006. View Article : Google Scholar : PubMed/NCBI
|
14
|
García MA, Gil J, Ventoso I, Guerra S,
Domingo E, Rivas C and Esteban M: Impact of protein kinase PKR in
cell biology: From antiviral to antiproliferative action. Microbiol
Mol Biol Rev. 70:1032–1060. 2006. View Article : Google Scholar
|
15
|
Lee ES, Yoon C, Kim Y and Bae Y: The
double-strand RNA-dependent protein kinase PKR plays a significant
role in a sustained ER stress-induced apoptosis. FEBS Lett.
581:4325–4332. 2007. View Article : Google Scholar : PubMed/NCBI
|
16
|
Hugon J, Mouton-Liger F, Dumurgier J and
Paquet C: PKR involvement in Alzheimer's disease. Alzheimer Res
Ther. 9:832017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Ung TL, Cao C, Lu J, Ozato K and Dever TE:
Heterologous dimerization domains functionally substitute for the
double-stranded RNA binding domains of the kinase PKR. EMBO J.
20:3728–3737. 2001. View Article : Google Scholar : PubMed/NCBI
|
18
|
Williams BR: Signal integration via PKR.
Sci STKE. 2001:re22001.PubMed/NCBI
|
19
|
De Lucca FL, Serrano SV, Souza LR and
Watanabe MA: Activation of RNA-dependent protein kinase and nuclear
factor-kB by regulatory RNA from lipopolysaccharide-stimulated
macrophages: Implications for cytokine production. Eur J Pharmacol.
450:85–89. 2002. View Article : Google Scholar : PubMed/NCBI
|
20
|
Robertson HD and Mathews MB: The
regulation of the protein kinase PKR by RNA. Biochimie. 78:909–914.
1996. View Article : Google Scholar : PubMed/NCBI
|
21
|
Kim Y, Lee JH, Park JE, Cho J, Yi H and
Kim VN: PKR is activated by cellular dsRNAs during mitosis and acts
as a mitotic regulator. Genes Dev. 28:1310–1322. 2014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Lee SB and Esteban M: The
interferon-induced double-stranded RNA-activated protein kinase
induces apoptosis. Virology. 199:491–496. 1994. View Article : Google Scholar : PubMed/NCBI
|
23
|
Gil J and Esteban M: Induction of
apoptosis by the dsRNA-dependent protein kinase (PKR): Mechanism of
action. Apoptosis. 5:107–114. 2000. View Article : Google Scholar : PubMed/NCBI
|
24
|
Li B, Wang HS, Li GG, Zhao MJ and Zhao MH:
The role of endoplasmic reticulum stress in the early stage of
diabetic retinopathy. Acta Diabetol. 48:103–111. 2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Ito T, Yang M and May WS: RAX, a cellular
activator for double-stranded RNA-dependent protein kinase during
stress signaling. J Biol Chem. 274:15427–15432. 1999. View Article : Google Scholar : PubMed/NCBI
|
26
|
Silva VA, Polesskaya A, Sousa TA, Corrêa
VM, André ND, Reis RI, Kettelhut IC, Harel-Bellan A and De Lucca
FL: Expression and cellular localization of microRNA-29b and RAX,
an activator of the RNA-dependent protein kinase (PKR), in the
retina of streptozotocin-induced diabetic rats. Mol Vis.
17:2228–2240. 2011.PubMed/NCBI
|
27
|
Trinder P: Determination of blood glucose
using 4-amino phenazone as oxygen acceptor. J Clin Pathol.
22:2461969. View Article : Google Scholar : PubMed/NCBI
|
28
|
Furman BL: Streptozotocin-induced diabetic
models in mice and rats. Curr Protoc Pharmacol. 70:5.47.1–5.47.20.
2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Muaddi H, Majumder M, Peidis P, Papadakis
AI, Holcik M, Scheuner D, Kaufman RJ, Hatzoglou M and Koromilas AE:
Phosphorylation of eIF2α at serine 51 is an important determinant
of cell survival and adaptation to glucose deficiency. Mol Biol
Cell. 21:3220–3231. 2010. View Article : Google Scholar : PubMed/NCBI
|
30
|
Blalock WL, Bavelloni A, Piazzi M,
Tagliavini F, Faenza I, Martelli AM, Follo MY and Cocco L: Multiple
forms of PKR present in the nuclei of acute leukemia cells
represent an active kinase that is responsive to stress. Leukemia.
25:236–245. 2011. View Article : Google Scholar : PubMed/NCBI
|
31
|
Follo MY, Finelli C, Mongiorgi S, Clissa
C, Bosi C, Martinelli G, Blalock WL, Cocco L and Martelli AM: PKR
is activated in MDS patients and its subcellular localization
depends on disease severity. Leukemia. 22:2267–2269. 2008.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Hao C, Shao R, Raju U, Fang B, Swisher SG
and Pataer A: Accumulation of RNA-dependent protein kinase (PKR) in
the nuclei of lung cancer cells mediates radiation resistance.
Oncotarget. 7:38235–38242. 2016. View Article : Google Scholar : PubMed/NCBI
|
33
|
Bose A, Mouton-Liger F, Paquet C, Mazot P,
Vigny M, Gray F and Hugon J: Modulation of tau phosphorylation by
the kinase PKR: Implications in Alzheimer's disease. Brain Pathol.
21:189–200. 2010. View Article : Google Scholar : PubMed/NCBI
|
34
|
Paquet C, Bose A, Polivka M, Peoch K,
Brouland JP, Keohane C, Hugon J and Gray F: Neuronal phosphorylated
RNA-dependent protein kinase in Creutzfeldt-Jakob disease. J
Neuropathol Exp Neurol. 68:190–198. 2009. View Article : Google Scholar : PubMed/NCBI
|
35
|
Onuki R, Bando Y, Suyama E, Katayama T,
Kawasaki H, Baba T, Tohyama M and Taira K: A RNA-dependent protein
kinase is involved in tunicamycin-induced apoptosis and Alzheimer's
disease. EMBO J. 23:959–968. 2004. View Article : Google Scholar : PubMed/NCBI
|
36
|
Dey A and Swaminathan K:
Hyperglycemia-induced mitochondrial alterations in liver. Life Sci.
87:197–214. 2010. View Article : Google Scholar : PubMed/NCBI
|
37
|
Kim Y, Park J, Kim S, Kim M, Kang MG, Kwak
C, Kang M, Kim B, Rhee HW and Kim VN: PKR senses nuclear and
mitochondrial signals by interacting with endogenous
double-stranded RNAs. Mol Cell. 71:1051–1063.e6. 2018. View Article : Google Scholar : PubMed/NCBI
|
38
|
Chen LL and Yang L: ALUternative
regulation for gene expression. Trends Cell Biol. 27:480–490. 2017.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Liu WM, Chu WM, Choudary PV and Schmid CW:
Cell stress and translational inhibitors transiently increase the
abundance of mammalian SINE transcripts. Nucleic Acids Res.
23:1758–1765. 1995. View Article : Google Scholar : PubMed/NCBI
|
40
|
Chu WM, Ballard R, Carpick BW, Williams BR
and Schmid CW: Potential alu function: Regulation of the activity
of double-stranded rna-activated kinase PKR. Mol Cell Biol.
18:58–68. 1998. View Article : Google Scholar : PubMed/NCBI
|
41
|
Wang W, Wang W, Azadzoi KM, Dai P, Wang Q,
Sun JB, Zhang WT, Shu Y, Yang JH and Yan Z: Alu RNA accumulation in
hyperglycemia augments oxidative stress and impairs eNOS and SOD2
expression in endothelial cells. Mol Cell Endocrinol. 426:91–100.
2016. View Article : Google Scholar : PubMed/NCBI
|