1
|
Yang Y, Shi K, Patel DM, Liu F, Wu T and
Chai Z: How to inhibit transforming growth factor beta safely in
diabetic kidney disease. Curr Opin Nephrol Hypertens. 30:115–122.
2021. View Article : Google Scholar : PubMed/NCBI
|
2
|
Feliers D, Lee HJ and Kasinath BS:
Hydrogen sulfide in renal physiology and disease. Antioxid Redox
Signal. 25:720–731. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Alicic RZ, Cox EJ, Neumiller JJ and Tuttle
KR: Incretin drugs in diabetic kidney disease: Biological
mechanisms and clinical evidence. Nat Rev Nephrol. 17:227–244.
2021. View Article : Google Scholar : PubMed/NCBI
|
4
|
Lin J, Cheng A, Cheng K, Deng Q, Zhang S,
Lan Z, Wang W and Chen J: New insights into the mechanisms of
pyroptosis and implications for diabetic kidney disease. Int J Mol
Sci. 21:70572020. View Article : Google Scholar : PubMed/NCBI
|
5
|
Sun HJ, Wu ZY, Cao L, Zhu MY, Liu TT, Guo
L, Lin Y, Nie XW and Bian JS: Hydrogen sulfide: Recent progression
and perspectives for the treatment of diabetic nephropathy.
Molecules. 24:28572019. View Article : Google Scholar : PubMed/NCBI
|
6
|
Dugbartey GJ: Diabetic nephropathy: A
potential savior with ‘rotten-egg’ smell. Pharmacol Rep.
69:331–339. 2017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Sun HJ, Xiong SP, Cao X, Cao L, Zhu MY, Wu
ZY and Bian JS: Polysulfide-mediated sulfhydration of SIRT1
prevents diabetic nephropathy by suppressing phosphorylation and
acetylation of p65 NF-κB and STAT3. Redox Biol. 38:1018132020.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta
R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS,
et al: Ferroptosis: An iron-dependent form of nonapoptotic cell
death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Wu D and Chen L: Ferroptosis: A novel cell
death form will be a promising therapy target for diseases. Acta
Biochim Biophys Sin (Shanghai). 47:857–859. 2015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Tang D, Chen X, Kang R and Kroemer G:
Ferroptosis: Molecular mechanisms and health implications. Cell
Res. 31:107–125. 2021. View Article : Google Scholar : PubMed/NCBI
|
11
|
Tang D and Kroemer G: Ferroptosis. Curr
Biol. 30:R1292–R1297. 2020. View Article : Google Scholar : PubMed/NCBI
|
12
|
Latunde-Dada GO: Ferroptosis: Role of
lipid peroxidation, iron and ferritinophagy. Biochimica et
biophysica acta. Biochim Biophysc Acta Gen Subj. 1861:1893–1900.
2017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Martin-Sanchez D, Ruiz-Andres O, Poveda J,
Carrasco S, Cannata-Ortiz P, Sanchez-Niño MD, Ortega MR, Egido J,
Linkermann A, Ortiz A and Sanz AB: Ferroptosis, but not
necroptosis, is important in nephrotoxic folic acid-induced AKI. J
Am Soc Nephrol. 28:218–229. 2017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Guerrero-Hue M, García-Caballero C,
Palomino-Antolín A, Rubio-Navarro A, Vázquez-Carballo C, Herencia
C, Martín-Sanchez D, Farré-Alins V, Egea J, Cannata P, et al:
Curcumin reduces renal damage associated with rhabdomyolysis by
decreasing ferroptosis-mediated cell death. FASEB J. 33:8961–8975.
2019. View Article : Google Scholar : PubMed/NCBI
|
15
|
Lee H, Zandkarimi F, Zhang Y, Meena JK,
Kim J, Zhuang L, Tyagi S, Ma L, Westbrook TF, Steinberg GR, et al:
Energy-stress-mediated AMPK activation inhibits ferroptosis. Nat
Cell Biol. 22:225–234. 2020. View Article : Google Scholar : PubMed/NCBI
|
16
|
Li Z, Li J, Miao X, Cui W, Miao L and Cai
L: A minireview: Role of AMP-activated protein kinase (AMPK)
signaling in obesity-related kidney injury. Life Sci.
15:1188282020.
|
17
|
Unsal V, Cicek M and Sabancilar I:
Toxicity of carbon tetrachloride, free radicals and role of
antioxidants. Rev Environ Health. 24:doi: 10.1515. 2020.PubMed/NCBI
|
18
|
Wang Y, Bi R, Quan F, Cao Q, Lin Y, Yue C,
Cui X, Yang H, Gao X and Zhang D: Ferroptosis involves in renal
tubular cell death in diabetic nephropathy. Eur J Pharmacol.
888:1735742020. View Article : Google Scholar : PubMed/NCBI
|
19
|
Li S, Zheng L, Zhang J, Liu X and Wu Z:
Inhibition of ferroptosis by up-regulating Nrf2 delayed the
progression of diabetic nephropathy. Free Radic Biol Med.
162:435–449. 2021. View Article : Google Scholar : PubMed/NCBI
|
20
|
Shichiri M, Ishimaru S, Ota T, Nishikawa
T, Isogai T and Hirata Y: Salusins: Newly identified bioactive
peptides with hemodynamic and mitogenic activities. Nat Med.
9:1166–1172. 2003. View
Article : Google Scholar : PubMed/NCBI
|
21
|
Suzuki N, Shichiri M, Tateno T, Sato K and
Hirata Y: Distinct systemic distribution of salusin-α and salusin-β
in the rat. Peptides. 32:805–810. 2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Suzuki N, Shichiri M, Akashi T, Sato K,
Sakurada M, Hirono Y, Yoshimoto T, Koyama T and Hirata Y: Systemic
distribution of salusin expression in the rat. Hypertension Res.
30:1255–1262. 2007. View Article : Google Scholar : PubMed/NCBI
|
23
|
Sato K, Watanabe R, Itoh F, Shichiri M and
Watanabe T: Salusins: Potential use as a biomarker for
atherosclerotic cardiovascular diseases. Int J Hypertension.
2013:9651402013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Watanabe T, Sato K, Itoh F, Iso Y,
Nagashima M, Hirano T and Shichiri M: The roles of salusins in
atherosclerosis and related cardiovascular diseases. J Am Soc
Hypertens. 5:359–365. 2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Kolakowska U, Olanski W and Wasilewska A:
Salusins in hypertension and related cardiovascular diseases. Curr
Drug Metab. 17:827–833. 2016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Wang WJ, Jiang X, Gao CC and Chen ZW:
Salusin-α mitigates diabetic nephropathy via inhibition of the
Akt/mTORC1/p70S6K signaling pathway in diabetic rats. Drug Chem
Toxicol. 31:1–8. 2019. View Article : Google Scholar
|
27
|
Fujimoto K, Hayashi A, Kamata Y, Ogawa A,
Watanabe T, Ichikawa R, Iso Y, Koba S, Kobayashi Y, Koyama T and
Shichiri M: Circulating levels of human salusin-beta, a potent
hemodynamic and atherogenesis regulator. PLoS One. 8:e767142013.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Kolakowska U, Kuroczycka-Saniutycz E,
Wasilewska A and Olanski W: Is the serum level of salusin-beta
associated with hypertension and atherosclerosis in the pediatric
population? Pediatr Nephrol. 30:523–531. 2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Yassien M, Fawzy O, Mahmoud E and Khidr
EG: Serum salusin-β in relation to atherosclerosis and ventricular
dysfunction in patients with type 2 diabetes mellitus. Diabetes
Metab Syndr. 14:2057–2062. 2020. View Article : Google Scholar : PubMed/NCBI
|
30
|
Sipahi S, Genc AB, Acikgoz SB, Yildirim M,
Aksoy YE, Vatan MB, Dheir H and Altındis M: Relationship of
salusin-alpha and salusin-beta levels with atherosclerosis in
patients undergoing haemodialysis. Singapore Med J. 60:210–215.
2019. View Article : Google Scholar : PubMed/NCBI
|
31
|
Sahin I and Aydin S: Serum concentration
and kidney expression of salusin-α and salusin-β in rats with
metabolic syndrome induced by fructose. Biotech Histochem.
88:153–160. 2013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Zhao MX, Zhou B, Ling L, Xiong XQ, Zhang
F, Chen Q, Li YH, Kang YM and Zhu GQ: Salusin-β contributes to
oxidative stress and inflammation in diabetic cardiomyopathy. Cell
Death Dis. 8:e26902017. View Article : Google Scholar : PubMed/NCBI
|
33
|
Sun H, Zhang F, Xu Y, Sun S, Wang H, Du Q,
Gu C, Black SM, Han Y and Tang H: Salusin-β promotes vascular
calcification via nicotinamide adenine dinucleotide
phosphate/reactive oxygen species-mediated klotho downregulation.
Antioxid Redox Signal. 31:1352–1370. 2019. View Article : Google Scholar : PubMed/NCBI
|
34
|
Sun HJ, Chen D, Wang PY, Wan MY, Zhang CX,
Zhang ZX, Lin W and Zhang F: Salusin-β is involved in diabetes
mellitus-induced endothelial dysfunction via degradation of
peroxisome proliferator-activated receptor gamma. Oxid Med Cell
Longev. 2017:69052172017. View Article : Google Scholar : PubMed/NCBI
|
35
|
Lu QB, Du Q, Wang HP, Tang ZH, Wang YB and
Sun HJ: Salusin-β mediates tubular cell apoptosis in acute kidney
injury: Involvement of the PKC/ROS signaling pathway. Redox Biol.
30:1014112020. View Article : Google Scholar : PubMed/NCBI
|
36
|
Zheng J and Conrad M: The metabolic
underpinnings of ferroptosis. Cell Metab. 32:920–937. 2020.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Zhu X, Zhou Y, Cai W, Sun H and Qiu L:
Salusin-β mediates high glucose-induced endothelial injury via
disruption of AMPK signaling pathway. Biochem Biophys Res Commun.
491:515–521. 2017. View Article : Google Scholar : PubMed/NCBI
|
38
|
Sun HJ, Liu TY, Zhang F, Xiong XQ, Wang
JJ, Chen Q, Li YH, Kang YM, Zhou YB, Han Y, et al: Salusin-β
contributes to vascular remodeling associated with hypertension via
promoting vascular smooth muscle cell proliferation and vascular
fibrosis. Biochim Biophys Acta. 1852:1709–1718. 2015. View Article : Google Scholar : PubMed/NCBI
|
39
|
Szczesny-Malysiak E, Stojak M, Campagna R,
Grosicki M, Jamrozik M, Kaczara P and Chlopicki S: Bardoxolone
methyl displays detrimental effects on endothelial bioenergetics,
suppresses endothelial ET-1 release and increases endothelial
permeability in human microvascular endothelium. Oxid Med Cell
Long. 2020:46782522020.PubMed/NCBI
|
40
|
Song X, Zhu S, Chen P, Hou W, Wen Q, Liu
J, Xie Y, Liu J, Klionsky DJ, Kroemer G, et al: AMPK-mediated BECN1
phosphorylation promotes ferroptosis by directly blocking system
Xc− activity. Curr Biol. 28:2388–2399. 2018.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Zhu X, Wu S and Guo H: Active vitamin D
and vitamin D receptor help prevent high glucose induced oxidative
stress of renal tubular cells via AKT/UCP2 signaling pathway.
Biomed Res Int. 2019:90139042019. View Article : Google Scholar : PubMed/NCBI
|
42
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Sun HJ, Zhang LL, Fan ZD, Chen D, Zhang L,
Gao XY, Kang YM and Zhu GQ: Superoxide anions involved in
sympathoexcitation and pressor effects of salusin-β in
paraventricular nucleus in hypertensive rats. Acta physiol.
210:534–545. 2014. View Article : Google Scholar : PubMed/NCBI
|
44
|
Sun HJ, Zhao MX, Ren XS, Liu TY, Chen Q,
Li YH, Kang YM, Wang JJ and Zhu GQ: Salusin-β promotes vascular
smooth muscle cell migration and intimal hyperplasia after vascular
injury via ROS/NFκB/MMP-9 pathway. Antioxid Redox Signal.
24:1045–1057. 2016. View Article : Google Scholar : PubMed/NCBI
|
45
|
Akpınar O, Özşimşek A, Güzel M and
Nazıroğlu M: Clostridium botulinum neurotoxin A induces apoptosis
and mitochondrial oxidative stress via activation of TRPM2 channel
signaling pathway in neuroblastoma and glioblastoma tumor cells. J
Recept Signal Transduct Res. 40:620–632. 2020. View Article : Google Scholar
|
46
|
Ma X, Zhang J, Wu Z and Wang X: Chicoric
acid attenuates hyperglycemia-induced endothelial dysfunction
through AMPK-dependent inhibition of oxidative/nitrative stresses.
J Receptor Signal Trans Res. 9:1–15. 2020.
|
47
|
Lu QB, Sun JF, Yang QY, Cai WW, Xia MQ, Wu
FF, Gu N and Zhang ZJ: Magnetic brain stimulation using iron oxide
nanoparticle-mediated selective treatment of the left prelimbic
cortex as a novel strategy to rapidly improve depressive-like
symptoms in mice. Zool Res. 41:381–394. 2020. View Article : Google Scholar : PubMed/NCBI
|
48
|
Chen Q, Li Y, Luo J, Yang Y, Li J, Sun L,
Xiao L, Xu X, Peng Y and Liu F: Effect of norcantharidin on the
expression of FN, Col IV and TGF-β1 mRNA and protein in HK-2 cells
induced by high glucose. Zhong Nan Da Xue Xue Bao Yi Xue Ban.
37:278–284. 2012.(In Chinese). PubMed/NCBI
|
49
|
Lou JS, Zhao LP, Huang ZH, Chen XY, Xu JT,
Tai WC, Tsim KW, Chen YT and Xi T: Ginkgetin derived from ginkgo
biloba leaves enhances the therapeutic effect of cisplatin via
ferroptosis-mediated disruption of the Nrf2/HO-1 axis in EGFR
wild-type non-small-cell lung cancer. Phytomedicine. 80:1533702021.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Yu H, Guo P, Xie X, Wang Y and Chen G:
Ferroptosis, a new form of cell death and its relationships with
tumourous diseases. J Cell Mol Med. 21:648–657. 2017. View Article : Google Scholar : PubMed/NCBI
|
51
|
Song S, Gao Y, Sheng Y, Rui T and Luo C:
Targeting NRF2 to suppress ferroptosis in brain injury. Histol
Histopathol. 36:383–397. 2021.PubMed/NCBI
|
52
|
Kobayashi M, Suhara T, Baba Y, Kawasaki
NK, Higa JK and Matsui T: Pathological roles of iron in
cardiovascular disease. Curr Drug Targets. 19:1068–1076. 2018.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Ravingerová T, Kindernay L, Barteková M,
Ferko M, Adameová A, Zohdi V, Bernátová I, Ferenczyová K and Lazou
A: The molecular mechanisms of iron metabolism and its role in
cardiac dysfunction and cardioprotection. Int J Mol Sci.
21:78892020. View Article : Google Scholar
|
54
|
Seibt TM, Proneth B and Conrad M: Role of
GPX4 in ferroptosis and its pharmacological implication. Free Radic
Biol Med. 133:144–152. 2019. View Article : Google Scholar : PubMed/NCBI
|
55
|
Wang Y, Peng X, Zhang M, Jia Y, Yu B and
Tian J: Revisiting tumors and the cardiovascular system:
Mechanistic intersections and divergences in ferroptosis. Oxid Med
Cell Longev. 2020:97381432020.PubMed/NCBI
|
56
|
Yang L, Guan G, Lei L, Liu J, Cao L and
Wang X: Oxidative and endoplasmic reticulum stresses are involved
in palmitic acid-induced H9c2 cell apoptosis. Biosci Rep.
39:BSR201902252019. View Article : Google Scholar : PubMed/NCBI
|
57
|
Ma B, Guan G, Lv Q and Yang L: Curcumin
ameliorates palmitic acid-induced saos-2 cell apoptosis via
inhibiting oxidative stress and autophagy. Evid Based Complement
Alternat Med. 2021:55636602021. View Article : Google Scholar : PubMed/NCBI
|
58
|
Nechushtai R, Karmi O, Zuo K, Marjault HB,
Darash-Yahana M, Sohn YS, King SD, Zandalinas SI, Carloni P and
Mittler R: The balancing act of NEET proteins: Iron, ROS, calcium
and metabolism. Biochim Biophys Acta Mol Cell Res. 1867:1188052020.
View Article : Google Scholar : PubMed/NCBI
|
59
|
Chen X, Li J, Kang R, Klionsky DJ and Tang
D: Ferroptosis: Machinery and regulation. Autophagy. 26:1–28. 2020.
View Article : Google Scholar
|
60
|
Chen X, Yu C, Kang R and Tang D: Iron
metabolism in ferroptosis. Front Cell Dev Biol. 8:5902262020.
View Article : Google Scholar : PubMed/NCBI
|
61
|
Li LB, Chai R, Zhang S, Xu SF, Zhang YH,
Li HL, Fan YG and Guo C: Iron exposure and the cellular mechanisms
linked to neuron degeneration in adult mice. Cells. 8:1982019.
View Article : Google Scholar : PubMed/NCBI
|
62
|
Fang X, Cai Z, Wang H, Han D, Cheng Q,
Zhang P, Gao F, Yu Y, Song Z, Wu Q, et al: Loss of cardiac ferritin
H facilitates cardiomyopathy via Slc7a11-mediated ferroptosis. Circ
Res. 127:486–501. 2020. View Article : Google Scholar : PubMed/NCBI
|
63
|
Battaglia AM, Chirillo R, Aversa I, Sacco
A, Costanzo F and Biamonte F: Ferroptosis and cancer: Mitochondria
meet the ‘Iron Maiden’ cell death. Cells. 9:15052020. View Article : Google Scholar : PubMed/NCBI
|
64
|
Mathur A, Pandey VK and Kakkar P:
Activation of GSK3β/β-TrCP axis via PHLPP1 exacerbates Nrf2
degradation leading to impairment in cell survival pathway during
diabetic nephropathy. Free Radic Biol Med. 120:414–424. 2018.
View Article : Google Scholar : PubMed/NCBI
|
65
|
Wang S, Nie P, Lu X, Li C, Dong X, Yang F,
Luo P and Li B: Nrf2 participates in the anti-apoptotic role of
zinc in Type 2 diabetic nephropathy through wnt/β-catenin signaling
pathway. J Nutr Biochem. 84:1084512020. View Article : Google Scholar : PubMed/NCBI
|
66
|
Rubin A, Salzberg AC, Imamura Y,
Grivitishvilli A and Tombran-Tink J: Identification of novel
targets of diabetic nephropathy and PEDF peptide treatment using
RNA-seq. BMC Genomics. 17:9362016. View Article : Google Scholar : PubMed/NCBI
|
67
|
La Rosa P, Petrillo S, Turchi R,
Berardinelli F, Schirinzi T, Vasco G, Lettieri-Barbato D, Fiorenza
MT, Bertini ES, Aquilano K and Piemonte F: The Nrf2 induction
prevents ferroptosis in friedreich's ataxia. Redox Biol.
38:1017912020. View Article : Google Scholar : PubMed/NCBI
|
68
|
Kerins MJ and Ooi A: The roles of NRF2 in
modulating cellular iron homeostasis. Antioxid Redox Signal.
29:1756–1773. 2018. View Article : Google Scholar : PubMed/NCBI
|
69
|
Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R
and Tang D: Activation of the p62-Keap1-NRF2 pathway protects
against ferroptosis in hepatocellular carcinoma cells. Hepatology.
63:173–184. 2016. View Article : Google Scholar : PubMed/NCBI
|