1
|
López-Otín C, Blasco MA, Partridge L,
Serrano M and Kroemer G: The hallmarks of aging. Cell.
153:1194–1217. 2013. View Article : Google Scholar : PubMed/NCBI
|
2
|
Singh T and Newman AB: Inflammatory
markers in population studies of aging. Ageing Res Rev. 10:319–329.
2011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Roberts S, Colombier P, Sowman A, Mennan
C, Rolfing HD, Guicheux J and Edwards JR: Ageing in the
musculoskeletal system: Cellular function and dysfunction
throughout life. Acta Orthop. 87:15–25. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Marie PJ: Bone cell senescence: Mechanisms
and perspectives. J Bone Miner Res. 29:1311–1321. 2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Katsimbri P: The biology of normal bone
remodelling. Eur J Cancer Care (Engl):. 26:e127402017. View Article : Google Scholar : PubMed/NCBI
|
6
|
Han BI, Hwang SH and Lee MA: Progressive
reduction in autophagic capacity contributes to induction of
replicative senescence in Hs68 cells. Int J Biochem Cell Biol.
92:18–25. 2017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Boyce BF, Zuscik MJ and Xing L: Biology of
bone and cartilage. Genetics of Bone Biology and Skeletal Disease.
Thakker RV, Eisman J, Igarashi T and Whyte MP: Elsevier; London:
pp. 3–24. 2012
|
8
|
Cao JJ, Wronski TJ, Iwaniec U, Phleger L,
Kurimoto P, Boudignon B and Halloran BP: Aging increases
stromal/osteoblastic cell-induced osteoclastogenesis and alters the
osteoclast precursor pool in the mouse. J Bone Miner Res.
20:1659–1668. 2005. View Article : Google Scholar : PubMed/NCBI
|
9
|
Ahmed AS, Sheng MH, Wasnik S, Baylink DJ
and Lau KW: Effect of aging on stem cells. World J Exp Med. 7:1–10.
2017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Coppe JP, Patil CK, Rodier F, Sun Y, Munoz
DP, Goldstein J, Nelson PS, Desprez PY and Campisi J:
Senescence-associated secretory phenotypes reveal
cell-nonautonomous functions of oncogenic RAS and the p53 tumor
suppressor. PLoS Biol. 6:2853–2868. 2008. View Article : Google Scholar : PubMed/NCBI
|
11
|
Kim HN, Chang J, Shao L, Han L, Iyer S,
Manolagas SC, O'Brien CA, Jilka RL, Zhou D and Almeida M: DNA
damage and senescence in osteoprogenitors expressing Osx1 may cause
their decrease with age. Aging Cell. 16:693–703. 2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Farr JN, Fraser DG, Wang H, Jaehn K,
Ogrodnik MB, Weivoda MM, Drake MT, Tchkonia T, LeBrasseur NK,
Kirkland JL, et al: Identification of senescent cells in the bone
microenvironment. J Bone Miner Res. 31:1920–1929. 2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Collin-Osdoby P and Osdoby P:
RANKL-mediated osteoclast formation from murine RAW264.7 cells.
Methods Mol Biol. 816:187–202. 2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Ueta M, Takaoka K, Yamamura M, Maeda H,
Tamaoka J, Nakano Y, Nouchi K and Kishimoto H: Effects of TGF-β1 on
the migration and morphology of RAW264.7 cells in vitro. Mol
Med Rep. 20:4331–4339. 2019.PubMed/NCBI
|
15
|
Wang Z, Gao J, Ohno Y, Liu H and Xu C:
Rosiglitazone ameliorates senescence and promotes apoptosis in
ovarian cancer induced by Olaparib. Cancer Chemother Pharmacol.
85:273–284. 2020. View Article : Google Scholar : PubMed/NCBI
|
16
|
Nezu T, Hosomi N, Takahashi T, Anno K,
Aoki S, Shimamoto A, Maruyama H, Hayashi T, Matsumoto M and Tahara
H: Telomere G-tail length is a promising biomarker related to white
matter lesions and endothelial dysfunction in patients with
cardiovascular risk: A cross-sectional study. EBioMedicine.
30:960–967. 2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Takahashi N, Yamana H, Yoshiki S, Roodman
GD, Mundy GR, Jones SJ, Boyde A and Suda T: Osteoclast-like cell
formation and its regulation by osteotropic hormones in mouse bone
marrow cultures. Endocrinology. 122:1373–1382. 1988. View Article : Google Scholar : PubMed/NCBI
|
18
|
Guevara I, Iwanejko J, Dembinska-Kiec A,
Pankiewicz J, Wanat A, Anna P, Golabek I, Bartus S,
Malczewska-Malec M and Szczudlik A: Determination of
nitrite/nitrate in human biological material by the simple Griess
reaction. Clin Chim Acta. 274:177–188. 1998. View Article : Google Scholar : PubMed/NCBI
|
19
|
Kim JH, Lee CH and Lee SW: Exosomal
transmission of microRNA from HCV replicating cells stimulates
transdifferentiation in hepatic stellate cells. Mol Ther Nucleic
Acids. 14:483–497. 2019. View Article : Google Scholar : PubMed/NCBI
|
20
|
Li Y, Yang Y, Xiong A, Wu X, Xie J, Han S
and Zhao S: Comparative gene expression analysis of lymphocytes
treated with exosomes derived from ovarian cancer and ovarian
cysts. Front Immunol. 8:6072017. View Article : Google Scholar : PubMed/NCBI
|
21
|
Wermuth PJ, Piera-Velazquez S and Jimenez
SA: Exosome isolated from serum of systemic sclerosis patients
display alterations in their content of profibrotic and
antifibrotic microRNA and induce a profibrotic phenotype in
cultured normal dermal fibroblasts. Clin Exp Rheumatol. 35:21–30.
2017.PubMed/NCBI
|
22
|
Hashitani S, Urade M, Nishimura N, Maeda
T, Takaoka K, Noguchi K and Sakurai K: Apoptosis induction and
enhancement of cytotoxicity of anticancer drugs by celecoxib, a
selective cyclooxygenase-2 inhibitor, in human head and neck
carcinoma cell lines. Int J Oncol. 23:665–672. 2003.PubMed/NCBI
|
23
|
Simonet WS, Lacey DL, Dunstan CR, Kelley
M, Chang MS, Luthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, et
al: Osteoprotegerin: A novel secreted protein involved in the
regulation of bone density. Cell. 89:309–319. 1997. View Article : Google Scholar : PubMed/NCBI
|
24
|
Harding CV, Heuser JE and Stahl PD:
Exosomes: Looking back three decades and into the future. J Cell
Biol. 200:367–371. 2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Raposo G and Stoorvogel W: Extracellular
vesicles: Exosomes, microvesicles, and friends. J Cell Biol.
200:373–383. 2013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Hayflick L and Moorhead PS: The serial
cultivation of human diploid cell strains. Exp Cell Res.
25:585–621. 1961. View Article : Google Scholar : PubMed/NCBI
|
27
|
Campisi J and d'Adda di Fagagna F:
Cellular senescence: When bad things happen to good cells. Nat Rev
Mol Cell Biol. 8:729–740. 2007. View Article : Google Scholar : PubMed/NCBI
|
28
|
Zeng X: Human embryonic stem cells:
Mechanisms to escape replicative senescence? Stem Cell Rev.
3:270–279. 2007. View Article : Google Scholar : PubMed/NCBI
|
29
|
Delfarah A, Parrish S, Junge JA, Yang J,
Seo F, Li S, Mac J, Wang P, Fraser SE and Graham NA: Inhibition of
nucleotide synthesis promotes replicative senescence of human
mammary epithelial cells. J Biol Chem. 294:10564–10578. 2019.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Alique M, Bodega G, Giannarelli C,
Carracedo J and Ramírez R: MicroRNA-126 regulates hypoxia-inducible
factor-1α which inhibited migration, proliferation, and
angiogenesis in replicative endothelial senescence. Sci Rep.
9:73812019. View Article : Google Scholar : PubMed/NCBI
|
31
|
Gan K, Xu L, Feng X, Zhang Q, Wang F,
Zhang M and Tan W: Celastrol attenuates bone erosion in
collagen-induced arthritis mice and inhibits osteoclast
differentiation and function in RANKL-induced RAW264.7. Int
Immunopharmacol. 24:239–246. 2015. View Article : Google Scholar : PubMed/NCBI
|
32
|
GuezGuez A, Prod'Homme V, Mouska X, Baudot
A, Blin-Wakkach C, Rottapel R and Deckert M: 3BPs adapter protein
is required for receptor activator of NFκB ligand (RANKL)-induced
osteoclast differentiation of RAW264.7. J Biol Chem.
285:20952–20963. 2010. View Article : Google Scholar : PubMed/NCBI
|
33
|
Itahana K, Campisi J and Dimri GP: Methods
to detect biomarkers of cellular enescence: The
senescence-associated beta-galactosidase assay. Methods Mol Biol.
371:21–31. 2007. View Article : Google Scholar : PubMed/NCBI
|
34
|
Dimri GP, Lee X, Basile G, Acosta M, Scott
G, Roskelley C, Medrano MM, Linskens M, Rubelj I, Pereira-Smith O,
et al: A biomarker that identifies senescent human cells in culture
and in aging skin in vivo. Proc Natl Acad Sci USA. 92:9363–9367.
1995. View Article : Google Scholar : PubMed/NCBI
|
35
|
Debacq-Chainiaux F, Erusalimsky JD,
Campisi J and Toussaint O: Protocols to detect
senescence-associated beta-galactosidase (SA-betagal) activity, a
biomarker of senescent cells in culture and in vivo. Nat Protoc.
4:1798–1806. 2009. View Article : Google Scholar : PubMed/NCBI
|
36
|
Vogelstein B, Lane DP and Levine AJ:
Surfing the p53 network. Nature. 408:307–310. 2000. View Article : Google Scholar : PubMed/NCBI
|
37
|
Levine AJ and Oren M: The first 30 years
of p53: Growing ever more complex. Nat Rev Cancer. 9:749–758. 2009.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Vousden KH and Prives C: Blinded by the
light: The Growing complexity of p53. Cell. 137:413–431. 2009.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Feng Z, Zhang H, Levine AJ and Jin S: The
coordinate regulation of the p53 and mTOR pathways in cells. Proc
Natl Acad Sci USA. 102:8204–8209. 2005. View Article : Google Scholar : PubMed/NCBI
|
40
|
Budanov AV and Karin M: p53 target genes
sestrin1 and sestrin2 connect genotoxic stress and mTOR signalling.
Cell. 134:451–460. 2008. View Article : Google Scholar : PubMed/NCBI
|
41
|
Weichhart T: mTOR as regulator of
lifespan, aging, and cellular senescence: A mini-review.
Gerontology. 64:127–134. 2018. View Article : Google Scholar : PubMed/NCBI
|
42
|
Feng Z, Hu W, Teresky AK, Hernando E,
Cordon-Cardo C and Levine AJ: Declining p53 function in the aging
process: A possible mechanism for the increased tumor incidence in
older populations. Proc Natl Acad Sci USA. 104:16633–16638. 2007.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Campisi J: Aging, cellular senescence, and
cancer. Annu Rev Physiol. 75:685–705. 2013. View Article : Google Scholar : PubMed/NCBI
|
44
|
Soriani A, Zingoni A, Cerboni C, Lannitto
ML, Ricciardi RR, Gialleonardo VD, Cippitelli M, Fionda C, Petrucci
MT, Guarini A, et al: ATM-ATR-dependent up-regulation of DNAM-1 and
NKG2D ligands on multiple myeloma cells by therapeutic agents
results in enhanced NK-cell susceptibility and is associated with a
senescent phenotype. Blood. 113:3503–3511. 2009. View Article : Google Scholar : PubMed/NCBI
|
45
|
Coussens LM and Werb Z: Inflammation and
cancer. Nature. 420:860–867. 2002. View Article : Google Scholar : PubMed/NCBI
|
46
|
Takahashi S, Hakuta M, Aiba K, Ito Y,
Horikoshi N, Miura M, Hatake K and Ogata E: Elevation of
circulating plasma cytokines in cancer patients with high plasma
parathyroid hormone-related protein levels. Endocr Relat Cancer.
10:403–407. 2003. View Article : Google Scholar : PubMed/NCBI
|
47
|
Mabrouk N, Ghione S, Laurens V, Plenchette
S, Bettaieb A and Paul C: Senescence and cancer: Role of nitric
oxide (NO) in SASP. Cancers (Basel). 12:11452020. View Article : Google Scholar : PubMed/NCBI
|
48
|
Campisi J: Senescent cells, tumor
suppression, and organismal aging: Good citizens, bad neighbors.
Cell. 120:513–522. 2015. View Article : Google Scholar : PubMed/NCBI
|
49
|
Farr JN, Kaur J, Doolittle ML and Khosla
S: Osteocyte cellular senescence. Curr Osteoporos Rep. 18:559–567.
2020. View Article : Google Scholar : PubMed/NCBI
|
50
|
Walsh MC, Kim N, Kadono Y, Rho J, Lee SY,
Lorenzo J and Choi Y: Osteoimmunology: Interplay between the immune
system and bone metabolism. Annu Rev Immunol. 24:33–63. 2006.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Azuma Y, Kaji K, Katogi R, Takeshita S and
Kudo A: Tumor necrosis factor-alpha induces differentiation of and
bone resorption by osteoclasts. J Biol Chem. 18:4858–4864. 2000.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Komine M, Kukita A, Kukita T, Ogata Y,
Hotokebuchi T and Kohashi O: Tumor necrosis factor-alpha cooperates
with receptor activator of nuclear factor kappaB ligand in
generation of osteoclasts in stromal cell-depleted rat bone marrow
cell culture. Bone. 28:474–483. 2001. View Article : Google Scholar : PubMed/NCBI
|
53
|
Palmqvist P, Persson E, Conaway HH and
Lerner UH: IL-6, leukemia inhibitory factor, and oncostatin M
stimulate bone resorption and regulate the expression of receptor
activator of NF-kappa B ligand, osteoprotegerin, and receptor
activator of NF-kappa B in mouse calvariae. J Immunol.
169:3353–3362. 2002. View Article : Google Scholar : PubMed/NCBI
|
54
|
Feng W, Liu H, Luo T, Liu D, Du J, Sun J,
Wang W, Han X, Yang K, Guo J, et al: Combination of IL-6 and sIL-6R
differentially regulate varying levels of RANKL-induced
osteoclastogenesis through NF-κB, ERK and JNK signaling pathways.
Sci Rep. 7:414112017. View Article : Google Scholar : PubMed/NCBI
|
55
|
Yokota K, Sato K, Miyazaki T, Kitaura H,
Kayama H, Miyoshi F, Araki Y, Akiyama Y, Takeda K and Mimura T:
Combination of tumor necrosis factor α and interleukin-6 induces
mouse osteoclast-like cells with bone resorption activity both in
vitro and in vivo. Arthritis Rheumatol. 66:121–129. 2014.
View Article : Google Scholar : PubMed/NCBI
|
56
|
MacIntyre I, Zaidi M, Alam AS, Datta HK,
Moonga BS, Lidbury PS, Hecker M and Vane JR: Osteoclastic
inhibition: An action of nitric oxide not mediated by cyclic GMP.
Proc Natl Acad Sci USA. 88:2936–2940. 1991. View Article : Google Scholar : PubMed/NCBI
|
57
|
Kasten TP, Collin-Osdoby P, Patel N,
Osdoby P, Krukuwski M, Misko TP, Settle SL, Currie MG and Nickols
GA: Potentiation of osteoclast bone-resorption activity by
inhibition of nitric oxide synthase. Proc Natl Acad Sci USA.
91:3569–3573. 1994. View Article : Google Scholar : PubMed/NCBI
|
58
|
Brandi M, Hukkanen M, Umeda T,
Moradi-Bidhendi N, Bianchi S, Gross SS, Polak JM and Maclntyre I:
Bidirectional regulation of osteoclast function by nitric oxide
synthase isoforms. Proc Natl Acad Sci USA. 92:2954–2958. 1995.
View Article : Google Scholar : PubMed/NCBI
|
59
|
Nathan C and Xie QW: Nitric oxide
synthases: Roles, tolls and controls. Cell. 78:915–918. 1994.
View Article : Google Scholar : PubMed/NCBI
|
60
|
Fukumura D, Kashiwagi S and Jain RK: The
role of nitric oxide in tumor progression. Nat Rev Cancer.
6:521–534. 2006. View Article : Google Scholar : PubMed/NCBI
|
61
|
Beckman JS, Beckman YW, Chen J, Marshall
PA and Freeman BA: Apparent hydroxyl radical production by
peroxynitrite: Implications for endothelial injury from nitric and
superoxide. Proc Natl Acad Sci USA. 87:1620–1624. 1990. View Article : Google Scholar : PubMed/NCBI
|
62
|
Zheng H, Yu X, Collin-Osdoby P and Osdoby
P: RANKL stimulates inducible nitric-oxide synthase expression and
nitric oxide production in developing osteoclasts. An autocrine
negative feedback mechanism triggered by RANKL-induced
interferon-beta via NF-kappaB that restrains osteoclastogenesis and
bone resorption. J Biol Chem. 281:15809–15820. 2006. View Article : Google Scholar : PubMed/NCBI
|
63
|
Takeda N, O'Dea EL, Doedens A, Kim JW,
Weidemann A, Stockmann C, Asagiri M, Simon MC, Hoffmann A and
Johnson RS: Differential activation and antagonistic function of
HIF-{alpha} isoforms in macrophages are essential for NO
homeostasis. Genes Dev. 24:491–501. 2010. View Article : Google Scholar : PubMed/NCBI
|
64
|
Wu C, Rankin EB, Castellini L, Alcudia JF,
LaGory EL, Andersen R, Rhodes SD, Wilson TL, Mohammad KS, Castillo
AB, et al: Oxygen-sensing PHDs regulate bone homeostasis through
the modulation of osteoprotegerin. Genes Dev. 29:817–831. 2015.
View Article : Google Scholar : PubMed/NCBI
|
65
|
Schorey JS, Cheng Y, Singh PP and Smith
VL: Exosomes and other extracellular vesicles in host-pathogen
interactions. EMBO Rep. 16:24–43. 2015. View Article : Google Scholar : PubMed/NCBI
|
66
|
Valadi H, Ekstrom K, Bossios A, Sjostrand
M, Lee JJ and Lotvall JO: Exosome-mediated transfer of mRNAs and
microRNAs is a novel mechanism of genetic exchange between cells.
Nat Cell Biol. 9:654–659. 2007. View Article : Google Scholar : PubMed/NCBI
|
67
|
Tkach M and Théry C: Communication by
extracellular vesicles: Where we are and where we need to go. Cell.
164:1226–1232. 2016. View Article : Google Scholar : PubMed/NCBI
|
68
|
Lehmann BD, Paine MS, Brooks AM, McCubrey
JA, Renegar RH, Wang R and Terrian DM: Senescence-associated
exosome release from human prostate cancer cells. Cancer Res.
68:7864–7871. 2008. View Article : Google Scholar : PubMed/NCBI
|
69
|
Yoshida M, Satoh A, Lin JB, Mills KF,
Sasaki Y, Rensing N, Wong M, Apte RS and Imai S: Extracellular
Vesicle-contained eNAMPT delays aging and extends lifespan in mice.
Cell Metab. 30:329–342. 2019. View Article : Google Scholar : PubMed/NCBI
|