SLC26A6 and NADC‑1: Future direction of nephrolithiasis and calculus‑related hypertension research (Review)
- Authors:
- Xingyue Yang
- Shun Yao
- Jiaxing An
- Hai Jin
- Hui Wang
- Biguang Tuo
-
Affiliations: Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China, Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China - Published online on: August 26, 2021 https://doi.org/10.3892/mmr.2021.12385
- Article Number: 745
This article is mentioned in:
Abstract
Evan AP, Lingeman JE, Worcester EM, Bledsoe SB, Sommer AJ, Williams JC Jr, Krambeck AE, Philips CL and Coe FL: Renal histopathology and crystal deposits in patients with small bowel resection and calcium oxalate stone disease. Kidney Int. 78:310–317. 2010. View Article : Google Scholar : PubMed/NCBI | |
Obligado SH and Goldfarb DS: The association of nephrolithiasis with hypertension and obesity: A review. Am J Hypertens. 21:257–264. 2008. View Article : Google Scholar : PubMed/NCBI | |
Borghi L, Meschi T, Guerra A, Briganti A, Schianchi T, Allegri F and Novarini A: Essential arterial hypertension and stone disease. Kidney Int. 55:2397–2406. 1999. View Article : Google Scholar : PubMed/NCBI | |
Pak CY: Kidney stones. Lancet. 351:1797–1801. 1998. View Article : Google Scholar : PubMed/NCBI | |
Lohi H, Kujala M, Kerkelä E, Saarialho-Kere U, Kestilä M and Kere J: Mapping of five new putative anion transporter genes in human and characterization of SLC26A6, a candidate gene for pancreatic anion exchanger. Genomics. 70:102–112. 2000. View Article : Google Scholar : PubMed/NCBI | |
Kleta R: A key stone cop regulates oxalate homeostasis. Nat Genet. 38:403–404. 2006. View Article : Google Scholar : PubMed/NCBI | |
Evan AP, Lingeman JE, Coe FL, Parks JH, Bledsoe SB, Shao Y, Sommer AJ, Paterson RF, Kuo RL and Grynpas M: Randall's plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J Clin Invest. 111:607–616. 2003. View Article : Google Scholar : PubMed/NCBI | |
Moe OW and Preisig PA: Dual role of citrate in mammalian urine. Curr Opin Nephrol Hypertens. 15:419–424. 2006. View Article : Google Scholar : PubMed/NCBI | |
Noori N, Honarkar E, Goldfarb DS, Kalantar-Zadeh K, Taheri M, Shakhssalim N, Parvin M and Basiri A: Urinary lithogenic risk profile in recurrent stone formers with hyperoxaluria: A randomized controlled trial comparing DASH (Dietary Approaches to Stop Hypertension)-style and low-oxalate diets. Am J Kidney Dis. 63:456–463. 2014. View Article : Google Scholar : PubMed/NCBI | |
Khan A: Prevalence, pathophysiological mechanisms and factors affecting urolithiasis. Int Urol Nephrol. 50:799–806. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shimshilashvili L, Aharon S, Moe OW and Ohana E: Novel human polymorphisms define a key role for the SLC26A6-STAS domain in protection from ca2+-oxalate lithogenesis. Front Pharmacol. 11:4052020. View Article : Google Scholar : PubMed/NCBI | |
Hamm LL: Renal handling of citrate. Kidney Int. 38:728–735. 1990. View Article : Google Scholar : PubMed/NCBI | |
Pajor AM: Sequence and functional characterization of a renal sodium/dicarboxylate cotransporter. J Biol Chem. 270:5779–5785. 1995. View Article : Google Scholar : PubMed/NCBI | |
Ohana E, Shcheynikov N, Moe OW and Muallem S: SLC26A6 and NaDC-1 transporters interact to regulate oxalate and citrate homeostasis. J Am Soc Nephrol. 24:1617–1626. 2013. View Article : Google Scholar : PubMed/NCBI | |
Prakash S, Cooper G, Singhi S and Saier MH Jr: The ion transporter superfamily. Biochim Biophys Acta. 1618:79–92. 2003. View Article : Google Scholar : PubMed/NCBI | |
Aguiar CJ, Andrade VL, Gomes ER, Alves MN, Ladeira MS, Pinheiro AC, Gomes DA, Almeida AP, Goes AM, Resende RR, et al: Succinate modulates Ca(2+) transient and cardiomyocyte viability through PKA-dependent pathway. Cell Calcium. 47:37–46. 2010. View Article : Google Scholar : PubMed/NCBI | |
Vargas SL, Toma I, Kang JJ, Meer EJ and Peti-Peterdi J: Activation of the succinate receptor GPR91 in macula densa cells causes renin release. J Am Soc Nephrol. 20:1002–1011. 2009. View Article : Google Scholar : PubMed/NCBI | |
He W, Miao FJ, Lin DC, Schwandner RT, Wang Z, Gao J, Chen JL, Tian H and Ling L: Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature. 429:188–193. 2004. View Article : Google Scholar : PubMed/NCBI | |
Baumbach L, Leyssac PP and Skinner SL: Studies on renin release from isolated superfused glomeruli: Effects of temperature, urea, ouabain and ethacrynic acid. J Physiol. 258:243–256. 1976. View Article : Google Scholar : PubMed/NCBI | |
Alper SL and Sharma AK: The SLC26 gene family of anion transporters and channels. Mol Aspects Med. 34:494–515. 2013. View Article : Google Scholar : PubMed/NCBI | |
Dorwart MR, Shcheynikov N, Yang D and Muallem S: The solute carrier 26 family of proteins in epithelial ion transport. Physiology (Bethesda). 23:104–114. 2008.PubMed/NCBI | |
Price GD and Howitt SM: The cyanobacterial bicarbonate transporter BicA: Its physiological role and the implications of structural similarities with human SLC26 transporters. Biochem Cell Biol. 89:178–188. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Wang W, Wang H and Tuo B: Physiological and pathological functions of SLC26A6. Front Med (Lausanne). 7:6182562021. View Article : Google Scholar : PubMed/NCBI | |
Bai X, Chen X, Feng Z, Hou K, Zhang P, Fu B and Shi S: Identification of basolateral membrane targeting signal of human sodium-dependent dicarboxylate transporter 3. J Cell Physiol. 206:821–830. 2006. View Article : Google Scholar : PubMed/NCBI | |
Waldegger S, Moschen I, Ramirez A, Smith RJ, Ayadi H, Lang F and Kubisch C: Cloning and characterization of SLC26A6, a novel member of the solute carrier 26 gene family. Genomics. 72:43–50. 2001. View Article : Google Scholar : PubMed/NCBI | |
Geertsma ER, Chang YN, Shaik FR, Neldner Y, Pardon E, Steyaert J and Dutzler R: Structure of a prokaryotic fumarate transporter reveals the architecture of the SLC26 family. Nat Struct Mol Biol. 22:803–808. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ko SB, Zeng W, Dorwart MR, Luo X, Kim KH, Millen L, Goto H, Naruse S, Soyombo A, Thomas PJ and Muallem S: Gating of CFTR by the STAS domain of SLC26 transporters. Nat Cell Biol. 6:343–350. 2004. View Article : Google Scholar : PubMed/NCBI | |
Malakooti J, Saksena S, Gill RK and Dudeja PK: Transcriptional regulation of the intestinal luminal Na+ and Cl− transporters. Biochem J. 435:313–325. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lohi H, Lamprecht G, Markovich D, Heil A, Kujala M, Seidler U and Kere J: Isoforms of SLC26A6 mediate anion transport and have functional PDZ interaction domains. Am J Physiol Cell Physiol. 284:C769–C779. 2003. View Article : Google Scholar : PubMed/NCBI | |
Poole DF and Tyler JE: Oxalic acid-produced surface phenomena on human enamel examined by scanning electron microscopy. Arch Oral Biol. 15:1157–1162. 1970. View Article : Google Scholar : PubMed/NCBI | |
Sirish P, Ledford HA, Timofeyev V, Thai PN, Ren L, Kim HJ, Park S, Lee JH, Dai G, Moshref M, et al: Action potential shortening and impairment of cardiac function by ablation of Slc26a6. Circ Arrhythm Electrophysiol. 10:e0052672017. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Petrovic S, Mann E and Soleimani M: Identification of an apical Cl(−)/HCO3(−) exchanger in the small intestine. Am J Physiol Gastrointest Liver Physiol. 282:G573–G579. 2002. View Article : Google Scholar : PubMed/NCBI | |
Freel RW, Hatch M, Green M and Soleimani M: Ileal oxalate absorption and urinary oxalate excretion are enhanced in Slc26a6 null mice. Am J Physiol Gastrointest Liver Physiol. 290:G719–G728. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ishiguro H, Yamamoto A, Nakakuki M, Yi L, Ishiguro M, Yamaguchi M, Kondo S and Mochimaru Y: Physiology and pathophysiology of bicarbonate secretion by pancreatic duct epithelium. Nagoya J Med Sci. 74:1–18. 2012.PubMed/NCBI | |
Wang Z, Wang T, Petrovic S, Tuo B, Riederer B, Barone S, Lorenz JN, Seidler U, Aronson PS and Soleimani M: Renal and intestinal transport defects in Slc26a6-null mice. Am J Physiol Cell Physiol. 288:C957–C965. 2005. View Article : Google Scholar : PubMed/NCBI | |
Gholami K, Muniandy S and Salleh N: In-vivo functional study on the involvement of CFTR, SLC26A6, NHE-1 and CA isoenzymes II and XII in uterine fluid pH, volume and electrolyte regulation in rats under different sex-steroid influence. Int J Med Sci. 10:1121–1134. 2013. View Article : Google Scholar : PubMed/NCBI | |
Knauf F, Yang CL, Thomson RB, Mentone SA, Giebisch G and Aronson PS: Identification of a chloride-formate exchanger expressed on the brush border membrane of renal proximal tubule cells. Proc Natl Acad Sci USA. 98:9425–9430. 2001. View Article : Google Scholar : PubMed/NCBI | |
Chernova MN, Jiang L, Friedman DJ, Darman RB, Lohi H, Kere J, Vandorpe DH and Alper SL: Functional comparison of mouse slc26a6 anion exchanger with human SLC26A6 polypeptide variants: Differences in anion selectivity, regulation, and electrogenicity. J Biol Chem. 280:8564–8580. 2005. View Article : Google Scholar : PubMed/NCBI | |
Clark JS, Vandorpe DH, Chernova MN, Heneghan JF, Stewart AK and Alper SL: Species differences in Cl− affinity and in electrogenicity of SLC26A6-mediated oxalate/Cl− exchange correlate with the distinct human and mouse susceptibilities to nephrolithiasis. J Physiol. 586:1291–1306. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jiang Z, Grichtchenko II, Boron WF and Aronson PS: Specificity of anion exchange mediated by mouse Slc26a6. J Biol Chem. 277:33963–33967. 2002. View Article : Google Scholar : PubMed/NCBI | |
Xie Q, Welch R, Mercado A, Romero MF and Mount DB: Molecular characterization of the murine Slc26a6 anion exchanger: Functional comparison with Slc26a1. Am J Physiol Renal Physiol. 283:F826–F838. 2002. View Article : Google Scholar : PubMed/NCBI | |
Aronson PS: Ion exchangers mediating Na+, HCO3− and Cl− transport in the renal proximal tubule. J Nephrol. 19 (Suppl 9):S3–S10. 2006.PubMed/NCBI | |
Jiang Z, Asplin JR, Evan AP, Rajendran VM, Velazquez H, Nottoli TP, Binder HJ and Aronson PS: Calcium oxalate urolithiasis in mice lacking anion transporter Slc26a6. Nat Genet. 38:474–478. 2006. View Article : Google Scholar : PubMed/NCBI | |
Markovich D and Murer H: The SLC13 gene family of sodium sulphate/carboxylate cotransporters. Pflugers Arch. 447:594–602. 2004. View Article : Google Scholar : PubMed/NCBI | |
Markovich D, Forgo J, Stange G, Biber J and Murer H: Expression cloning of rat renal Na+/SO4(2-) cotransport. Proc Natl Acad Sci USA. 90:8073–8077. 1993. View Article : Google Scholar : PubMed/NCBI | |
Bai L and Pajor AM: Expression cloning of NaDC-2, an intestinal Na(+)- or Li(+)-dependent dicarboxylate transporter. Am J Physiol. 273((2 Pt 1)): G267–G274. 1997.PubMed/NCBI | |
Steffgen J, Burckhardt BC, Langenberg C, Kühne L, Müller GA, Burckhardt G and Wolff NA: Expression cloning and characterization of a novel sodium-dicarboxylate cotransporter from winter flounder kidney. J Biol Chem. 274:20191–20196. 1999. View Article : Google Scholar : PubMed/NCBI | |
Pajor AM: Molecular cloning and functional expression of a sodium-dicarboxylate cotransporter from human kidney. Am J Physiol. 270((4 Pt 2)): F642–F648. 1996.PubMed/NCBI | |
Pajor AM and Sun NN: Molecular cloning, chromosomal organization, and functional characterization of a sodium-dicarboxylate cotransporter from mouse kidney. Am J Physiol Renal Physiol. 279:F482–F490. 2000. View Article : Google Scholar : PubMed/NCBI | |
Khatri IA, Kovacs SV and Forstner JF: Cloning of the cDNA for a rat intestinal Na+/dicarboxylate cotransporter reveals partial sequence homology with a rat intestinal mucin. Biochim Biophys Acta. 1309:58–62. 1996. View Article : Google Scholar : PubMed/NCBI | |
Sekine T, Cha SH, Hosoyamada M, Kanai Y, Watanabe N, Furuta Y, Fukuda K, Igarashi T and Endou H: Cloning, functional characterization, and localization of a rat renal Na+-dicarboxylate transporter. Am J Physiol. 275:F298–F305. 1998.PubMed/NCBI | |
Chen XZ, Shayakul C, Berger UV, Tian W and Hediger MA: Characterization of a rat Na+-dicarboxylate cotransporter. J Biol Chem. 273:20972–20981. 1998. View Article : Google Scholar : PubMed/NCBI | |
Mann SS, Hart T, Pettenati MJ, von Kap-herr C and Holmes RP: Assignment of the sodium-dependent dicarboxylate transporter gene (SLC13A2 alias NaDC-1) to human chromosome region 17p11.1->q11.1 by radiation hybrid mapping and fluorescence in situ hybridization. Cytogenet Cell Genet. 84:89–90. 1999. View Article : Google Scholar : PubMed/NCBI | |
Pajor AM: Molecular properties of sodium/dicarboxylate cotransporters. J Membr Biol. 175:1–8. 2000. View Article : Google Scholar : PubMed/NCBI | |
Pajor AM: Sodium-coupled transporters for Krebs cycle intermediates. Annu Rev Physiol. 61:663–682. 1999. View Article : Google Scholar : PubMed/NCBI | |
Hamm LL: Renal handling of citrate. Kidney Int. 38:728–735. 1990. View Article : Google Scholar : PubMed/NCBI | |
Aronson PS: Essential roles of CFEX-mediated Cl(−)-oxalate exchange in proximal tubule NaCl transport and prevention of urolithiasis. Kidney Int. 70:1207–1213. 2006. View Article : Google Scholar : PubMed/NCBI | |
Brennan TS, Klahr S and Hamm LL: Citrate transport in rabbit nephron. Am J Physiol. 251((4 Pt 2)): F683–F689. 1986.PubMed/NCBI | |
Shcheynikov N, Wang Y, Park M, Ko SB, Dorwart M, Naruse S, Thomas PJ and Muallem S: Coupling modes and stoichiometry of Cl-/HCO3− exchange by slc26a3 and slc26a6. J Gen Physiol. 127:511–524. 2006. View Article : Google Scholar : PubMed/NCBI | |
Khamaysi A, Anbtawee-Jomaa S, Fremder M, Eini-Rider H, Shimshilashvili L, Aharon S, Aizenshtein E, Shlomi T, Noguchi A, Springer D, et al: Systemic succinate homeostasis and local succinate signaling affect blood pressure and modify risks for calcium oxalate lithogenesis. J Am Soc Nephrol. 30:381–392. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mancusso R, Gregorio GG, Liu Q and Wang DN: Structure and mechanism of a bacterial sodium-dependent dicarboxylate transporter. Nature. 491:622–626. 2012. View Article : Google Scholar : PubMed/NCBI | |
Robben JH, Fenton RA, Vargas SL, Schweer H, Peti-Peterdi J, Deen PM and Milligan G: Localization of the succinate receptor in the distal nephron and its signaling in polarized MDCK cells. Kidney Int. 76:1258–1267. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sundstrom L, Greasley PJ, Engberg S, Wallander M and Ryberg E: Succinate receptor GPR91, a Gaα(i) coupled receptor that increases intracellular calcium concentrations through PLCβ. FEBS Lett. 587:2399–2404. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ando H, Mizutani A, Matsu-ura T and Mikoshiba K: IRBIT, a novel inositol 1,4,5-trisphosphate (IP3) receptor-binding protein, is released from the IP3 receptor upon IP3 binding to the receptor. J Biol Chem. 278:10602–10612. 2003. View Article : Google Scholar : PubMed/NCBI | |
Park S, Shcheynikov N, Hong JH, Zheng C, Suh SH, Kawaai K, Ando H, Mizutani A, Abe T, Kiyonari H, et al: Irbit mediates synergy between ca(2+) and cAMP signaling pathways during epithelial transport in mice. Gastroenterology. 145:232–241. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lungkaphin A, Lewchalermwongse B and Chatsudthipong V: Relative contribution of OAT1 and OAT3 transport activities in isolated perfused rabbit renal proximal tubules. Biochim Biophys Acta. 1758:789–795. 2006. View Article : Google Scholar : PubMed/NCBI | |
Okamoto N, Aruga S, Tomita K, Takeuchi T and Kitamura T: Chronic acid ingestion promotes renal stone formation in rats treated with vitamin D3. Int J Urol. 14:60–66. 2007. View Article : Google Scholar : PubMed/NCBI | |
Monico CG, Weinstein A, Jiang Z, Jiang Z, Rohlinger AL, Cogal AG, Bjornson BB, Olson JB, Bergstralh EJ, Milliner DS and Aronson PS: Phenotypic and functional analysis of human SLC26A6 variants in patients with familial hyperoxaluria and calcium oxalate nephrolithiasis. Am J Kidney Dis. 52:1096–1103. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jiang H, Pokhrel G, Chen Y, Wang T, Yin C, Liu J, Wang S and Liu Z: High expression of SLC26A6 in the kidney may contribute to renal calcification via an SLC26A6-dependent mechanism. PeerJ. 6:e51922018. View Article : Google Scholar : PubMed/NCBI | |
Khan SR, Khan A and Byer KJ: Temporal changes in the expression of mRNA of NADPH oxidase subunits in renal epithelial cells exposed to oxalate or calcium oxalate crystals. Nephrol Dial Transplant. 26:1778–1785. 2011. View Article : Google Scholar : PubMed/NCBI | |
Jiang H, Gao X, Gong J, Yang Q, Lan R, Wang T, Liu J, Yin C, Wang S and Liu Z: Downregulated expression of solute carrier family 26 member 6 in NRK-52E cells attenuates oxalate-induced intracellular oxidative stress. Oxid Med Cell Longev. 2018:17246482018. View Article : Google Scholar : PubMed/NCBI | |
Lu X, Sun D, Xu B, Pan J, Wei Y, Mao X, Yu D, Liu H and Gao B: In silico screening and molecular dynamic study of nonsynonymous single nucleotide polymorphisms associated with kidney stones in the SLC26A6 gene. J Urol. 196:118–123. 2016. View Article : Google Scholar : PubMed/NCBI | |
Corbetta S, Eller-Vainicher C, Frigerio M, Valaperta R, Costa E, Vicentini L, Baccarelli A, Beck-Peccoz P and Spada A: Analysis of the 206M polymorphic variant of the SLC26A6 gene encoding a Cl− oxalate transporter in patients with primary hyperparathyroidism. Eur J Endocrinol. 160:283–288. 2009. View Article : Google Scholar : PubMed/NCBI | |
Udomsilp P, Saepoo S, Ittiwut R, Shotelersuk V, Dissayabutra T, Boonla C and Tosukhowong P: rs11567842 SNP in SLC13A2 gene associates with hypocitraturia in Thai patients with nephrolithiasis. Genes Genomics. 40:965–972. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bosch B and De Boeck K: Searching for a cure for cystic fibrosis. A 25-year quest in a nutshell. Eur J Pediatr. 175:1–8. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bissig M, Hagenbuch B, Stieger B, Koller T and Meier PJ: Functional expression cloning of the canalicular sulfate transport system of rat hepatocytes. J Biol Chem. 269:3017–21. 1994. View Article : Google Scholar : PubMed/NCBI | |
Regeer RR and Markovich D: A dileucine motif targets the sulfate anion transporter sat-1 to the basolateral membrane in renal cell lines. Am. J. Physiol. 287((2)): C365–C372. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hästbacka J, de la Chapelle A, Mahtani MM, Clines G, Reeve-Daly MP, Daly M, Hamilton BA, Kusumi K, Trivedi B, et al: The diastrophic dysplasia gene encodes a novel sulfate transporter: positional cloning by fine-structure linkage disequilibrium mapping. Cell. 78((6)): 1073–1087. 1994. View Article : Google Scholar : PubMed/NCBI | |
Heneghan JF, Akhavein A, Salas MJ, Shmukler BE, Karniski LP, Vandorpe DH and Alper SL: Regulated transport of sulfate and oxalate by SLC26A2/DTDST. Am J Physiol Cell Physiol. 298((6)): C1363-75. doi: 10.1152/ajpcell.00004.2010. Epub 2010 Mar 10. Erratum in: Am J Physiol Cell Physiol. 2011 Feb; 300(2): C383. PMID: 20219950; PMCID: PMC2889644. PubMed/NCBI | |
Haila S, Hästbacka J, Böhling T, Karjalainen-Lindsberg ML, Kere J and Saarialho-Kere U: SLC26A2 (diastrophic dysplasia sulfate transporter) is expressed in developing and mature cartilage but also in other tissues and cell types. J Histochem. Cytochem. 49((8)): 973–982. 2001. View Article : Google Scholar : PubMed/NCBI | |
Hoglund P, Haila S, Socha J, Tomaszewski L, Saarialho-Kere U, Karjalainen-Lindsberg ML, Airola K, Holmberg C, de la Chapelle A and Kere J: Mutations of the Down-regulated in adenoma (DRA) gene cause congenital chloride diarrhoea. Nat Genet. 14:316–319. 1996. View Article : Google Scholar : PubMed/NCBI | |
Chernova MN, Jiang L, Shmukler BE, Schweinfest CW, Blanco P, Freedman SD, Stewart AK and Alper SL: Acute regulation of the SLC26A3 congenital chloride diarrhoea anion exchanger (DRA) expressed in Xenopus oocytes. J Physiol. 549((Pt 1)): 3–19. 2003. View Article : Google Scholar : PubMed/NCBI | |
Sheffield VC, Kraiem Z, Beck JC, Nishimura D, Stone EM, Salameh M, Sadeh O and Glaser B: Pendred syndrome maps to chromosome 7q21-34 and is caused by an intrinsic defect in thyroid iodine organification. Nat Genet. 12:424–426. 1996. View Article : Google Scholar : PubMed/NCBI | |
Shcheynikov N, Yang D, Wang Y, Zeng W, Karniski LP, So I, Wall SM and Muallem S: The Slc26a4 transporter functions as an electroneutral Cl-/I-/HCO3− exchanger: Role of Slc26a4 and Slc26a6 in I- and HCO3− secretion and in regulation of CFTR in the parotid duct. J Physiol. 586:3813–3824. 2008. View Article : Google Scholar : PubMed/NCBI | |
Liu XZ, Ouyang XM, Xia XJ, Zheng J, Pandya A, Li F, Du LL, Welch KO, Petit C, Smith RJ, et al: Prestin, a cochlear motor protein, is defective in non-syndromic hearing loss. Hum Mol Genet. 12:1155–1162. 2003. View Article : Google Scholar : PubMed/NCBI | |
Alvarez BV, Kieller DM, Quon AL, Markovich D and Casey JR: Slc26a6: A cardiac chloride-hydroxyl exchanger and predominant chloride-bicarbonate exchanger of the mouse heart. J Physiol. 561((Pt 3)): 721–734. 2004. View Article : Google Scholar : PubMed/NCBI | |
Petrovic S, Amlal H, Sun X, Karet F, Barone S and Soleimani M: Vasopressin induces expression of the Cl-/HCO3− exchanger SLC26A7 in kidney medullary collecting ducts of Brattleboro rats. Am J Physiol Renal Physiol. 290:F1194–F1201. 2006. View Article : Google Scholar : PubMed/NCBI | |
Dudas PL, Mentone S, Greineder CF, Biemesderfer D and Aronson PS: Immunolocalization of anion transporter Slc26a7 in mouse kidney. Am J Physiol Renal Physiol. 290:F937–F945. 2006. View Article : Google Scholar : PubMed/NCBI | |
Toure A, Morin L, Pineau C, Becq F, Dorseuil O and Gacon G: Tat1, a novel sulfate transporter specifically expressed in human male germ cells and potentially linked to rhogtpase signaling. J Biol Chem. 276:20309–20315. 2001. View Article : Google Scholar : PubMed/NCBI | |
Lohi H, Kujala M, Makela S, Lehtonen E, Kestila M, Saarialho-Kere U, Markovich D and Kere J: Functional characterization of three novel tissue-specific anion exchangers SLC26A7, -A8, and -A9. J Biol Chem. 277:14246–14254. 2002. View Article : Google Scholar : PubMed/NCBI | |
Loriol C, Dulong S, Avella M, Gabillat N, Boulukos K, Borgese F and Ehrenfeld J: Characterization of SLC26A9, facilitation of Cl (−) transport by bicarbonate. Cell Physiol Biochem. 22:15–30. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Chen X, Liu B and Zhu Z: Suppression of PTP1B in gastric cancer cells in vitro induces a change in the genome-wide expression profile and inhibits gastric cancer cell growth. Cell Biol Int. 34:747–753. 2010. View Article : Google Scholar : PubMed/NCBI | |
Stewart AK, Shmukler BE, Vandorpe DH, Reimold F, Heneghan JF, Nakakuki M, Akhavein A, Ko S, Ishiguro H and Alper SL: SLC26 anion exchangers of guinea pig pancreatic duct: Molecular cloning and functional characterization. Am J Physiol Cell Physiol. 301:C289–C303. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ouesleti S, Brunel V, Ben Turkia H, Dranguet H, Miled A, Miladi N, Ben Dridi MF, Lavoinne A, Saugier-Veber P and Bekri S: Molecular characterization of MPS IIIA, MPS IIIB and MPS IIIC in Tunisian patients. Clin Chim Acta. 412:2326–2331. 2011. View Article : Google Scholar : PubMed/NCBI |