1
|
Brigle K and Rogers B: Pathobiology and
diagnosis of multiple myeloma. Semin Oncol Nurs. 33:225–236. 2017.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Kazandjian D: Multiple myeloma
epidemiology and survival: A unique malignancy. Semin Oncol.
43:676–681. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Rajkumar SV: Multiple myeloma: 2016 update
on diagnosis, risk-stratification, and management. Am J Hematol.
91:719–734. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Nishida H and Yamada T: Monoclonal
antibody therapies in multiple myeloma: A challenge to develop
novel targets. J Oncol. 2019:60840122019. View Article : Google Scholar : PubMed/NCBI
|
5
|
Isa R, Uoshima N, Takahashi R,
Nakano-Akamatsu S, Kawata E, Kaneko H, Shimura K, Kamitsuji Y,
Takimoto-Shimomura T, Mizutani S, et al: Sequential therapy of four
cycles of bortezomib, melphalan, and prednisolone followed by
continuous lenalidomide and dexamethasone for transplant-ineligible
newly diagnosed multiple myeloma. Ann Hematol. 99:137–145. 2020.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Swyter S, Schiedel M, Monaldi D, Szunyogh
S, Lehotzky A, Rumpf T, Ovádi J, Sippl W and Jung M: New chemical
tools for probing activity and inhibition of the NAD(+)-dependent
lysine deacylase sirtuin 2. Philos Trans R Soc Lond B Biol Sci.
373:201700832018. View Article : Google Scholar : PubMed/NCBI
|
7
|
Liu G, Park SH, Imbesi M, Nathan WJ, Zou
X, Zhu Y, Jiang H, Parisiadou L and Gius D: Loss of NAD-dependent
protein deacetylase sirtuin-2 alters mitochondrial protein
acetylation and dysregulates mitophagy. Antioxid Redox Signal.
26:849–863. 2017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Patel VP and Chu CT: Decreased SIRT2
activity leads to altered microtubule dynamics in
oxidatively-stressed neuronal cells: Implications for Parkinson's
disease. Exp Neurol. 257:170–181. 2014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Szego EM, Gerhardt E and Outeiro TF:
Sirtuin 2 enhances dopaminergic differentiation via the
AKT/GSK-3β/β-catenin pathway. Neurobiol Aging. 56:7–16. 2017.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Sunami Y, Araki M, Hironaka Y, Morishita
S, Kobayashi M, Liew EL, Edahiro Y, Tsutsui M, Ohsaka A and Komatsu
N: Inhibition of the NAD-dependent protein deacetylase SIRT2
induces granulocytic differentiation in human leukemia cells. PLoS
One. 8:e576332013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Jeong SG and Cho GW: The tubulin
deacetylase sirtuin-2 regulates neuronal differentiation through
the ERK/CREB signaling pathway. Biochem Biophys Res Commun.
482:182–187. 2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Nakagawa T and Guarente L: Sirtuins at a
glance. J Cell Sci. 124:833–838. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Kim HS, Vassilopoulos A, Wang RH, Lahusen
T, Xiao Z, Xu X, Li C, Veenstra TD, Li B, Yu H, et al: SIRT2
maintains genome integrity and suppresses tumorigenesis through
regulating APC/C activity. Cancer Cell. 20:487–499. 2011.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Luthi-Carter R, Taylor DM, Pallos J,
Lambert E, Amore A, Parker A, Moffitt H, Smith DL, Runne H, Gokce
O, et al: SIRT2 inhibition achieves neuroprotection by decreasing
sterol biosynthesis. Proc Natl Acad Sci USA. 107:7927–7932. 2010.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Funato K, Hayashi T, Echizen K, Negishi L,
Shimizu N, Koyama-Nasu R, Nasu-Nishimura Y, Morishita Y, Tabar V,
Todo T, et al: SIRT2-mediated inactivation of p73 is required for
glioblastoma tumorigenicity. EMBO Rep. 19:e455872018. View Article : Google Scholar : PubMed/NCBI
|
16
|
Xu H, Li Y, Chen L, Wang C, Wang Q, Zhang
H, Lin Y, Li Q and Pang T: SIRT2 mediates multidrug resistance in
acute myelogenous leukemia cells via ERK1/2 signaling pathway. Int
J Oncol. 48:613–623. 2016. View Article : Google Scholar : PubMed/NCBI
|
17
|
Li Y, Zhang M, Dorfman RG, Pan Y, Tang D,
Xu L, Zhao Z, Zhou Q, Zhou L, Wang Y, et al: SIRT2 promotes the
migration and invasion of gastric cancer through RAS/ERK/JNK/MMP-9
pathway by increasing PEPCK1-related metabolism. Neoplasia.
20:745–756. 2018. View Article : Google Scholar : PubMed/NCBI
|
18
|
Dan L, Klimenkova O, Klimiankou M, Klusman
JH, van den Heuvel-Eibrink MM, Reinhardt D, Welte K and Skokowa J:
The role of sirtuin 2 activation by nicotinamide
phosphoribosyltransferase in the aberrant proliferation and
survival of myeloid leukemia cells. Haematologica. 97:551–559.
2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Salazar L, Kashiwada T, Krejci P,
Muchowski P, Donoghue D, Wilcox WR and Thompson LM: A novel
interaction between fibroblast growth factor receptor 3 and the p85
subunit of phosphoinositide 3-kinase: Activation-dependent
regulation of ERK by p85 in multiple myeloma cells. Hum Mol Genet.
18:1951–1961. 2009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Hu J and Hu WX: Targeting signaling
pathways in multiple myeloma: Pathogenesis and implication for
treatments. Cancer Lett. 414:214–221. 2018. View Article : Google Scholar : PubMed/NCBI
|
21
|
Moreau P, San Miguel J, Ludwig H, Schouten
H, Mohty M, Dimopoulos M and Dreyling M; ESMO Guidelines Working
Group: Multiple myeloma, : ESMO Clinical Practice Guidelines for
diagnosis, treatment and follow-up. Ann Oncol. 24 (Suppl
6):vi133–vi137. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Shaughnessy J Jr, Gabrea A, Qi Y, Brents
L, Zhan F, Tian E, Sawyer J, Barlogie B, Bergsagel PL and Kuehl M:
Cyclin D3 at 6p21 is dysregulated by recurrent chromosomal
translocations to immunoglobulin loci in multiple myeloma. Blood.
98:217–223. 2001. View Article : Google Scholar : PubMed/NCBI
|
23
|
Draube A, Pfister R, Vockerodt M, Schuster
S, Kube D, Diehl V and Tesch H: Immunomagnetic enrichment of CD138
positive cells from weakly infiltrated myeloma patients samples
enables the determination of the tumor clone specific IgH
rearrangement. Ann Hematol. 80:83–89. 2001. View Article : Google Scholar : PubMed/NCBI
|
24
|
Piracha ZZ, Kwon H, Saeed U, Kim J, Jung
J, Chwae YJ, Park S, Shin HJ and Kim K: Sirtuin 2 isoform 1
enhances hepatitis B virus RNA transcription and DNA synthesis
through the AKT/GSK-3β/β-catenin signaling pathway. J Virol.
92:e00955–18. 2018. View Article : Google Scholar
|
25
|
Dryden SC, Nahhas FA, Nowak JE, Goustin AS
and Tainsky MA: Role for human SIRT2 NAD-dependent deacetylase
activity in control of mitotic exit in the cell cycle. Mol Cell
Biol. 23:3173–3185. 2003. View Article : Google Scholar : PubMed/NCBI
|
26
|
Nie H, Li Y, Wang C, Chen X, Liu B, Wu D
and Ying W: SIRT2 plays a key role in both cell cycle regulation
and cell survival of BV2 microglia. Int J Physiol Pathophysiol
Pharmacol. 6:166–171. 2014.PubMed/NCBI
|
27
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Yang Y, Ding J, Gao ZG and Wang ZJ: A
variant in SIRT2 gene 3′-UTR is associated with susceptibility to
colorectal cancer. Oncotarget. 8:41021–41025. 2017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Ma K, Lu N, Zou F and Meng FZ: Sirtuins as
novel targets in the pathogenesis of airway inflammation in
bronchial asthma. Eur J Pharmacol. 865:1726702019. View Article : Google Scholar : PubMed/NCBI
|
30
|
Zhang Y and Chi D: Overexpression of SIRT2
alleviates neuropathic pain and neuroinflammation through
deacetylation of transcription factor nuclear Factor-Kappa B.
Inflammation. 41:569–578. 2018. View Article : Google Scholar : PubMed/NCBI
|
31
|
Dai Y, Chen S, Pei XY, Almenara JA, Kramer
LB, Venditti CA, Dent P and Grant S: Interruption of the
Ras/MEK/ERK signaling cascade enhances Chk1 inhibitor-induced DNA
damage in vitro and in vivo in human multiple myeloma cells. Blood.
112:2439–2449. 2008. View Article : Google Scholar : PubMed/NCBI
|
32
|
Mendoza MC, Er EE and Blenis J: The
Ras-ERK and PI3K-mTOR pathways: Cross-talk and compensation. Trends
Biochem Sci. 36:320–328. 2011. View Article : Google Scholar : PubMed/NCBI
|
33
|
Song HY, Biancucci M, Kang HJ, O'Callaghan
C, Park SH, Principe DR, Jiang H, Yan Y, Satchell KF, Raparia K, et
al: SIRT2 deletion enhances KRAS-induced tumorigenesis in vivo by
regulating K147 acetylation status. Oncotarget. 7:80336–80349.
2016. View Article : Google Scholar : PubMed/NCBI
|