1
|
Kumar S: Mycoplasma pneumoniae: A
significant but underrated pathogen in paediatric
community-acquired lower respiratory tract infections. Indian J Med
Res. 147:23–31. 2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Medjo B, Atanaskovic-Markovic M, Radic S,
Nikolic D, Lukac M and Djukic S: Mycoplasma pneumoniae as a
causative agent of community-acquired pneumonia in children:
Clinical features and laboratory diagnosis. Ital J Pediatr.
40:1042014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Yang HJ, Song DJ and Shim JY: Mechanism of
resistance acquisition and treatment of macrolide-resistant
Mycoplasma pneumoniae pneumonia in children. Korean J
Pediatr. 60:167–174. 2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Youn YS and Lee KY: Mycoplasma
pneumoniae pneumonia in children. Clin Exp Pediatr. 55:42–47.
2012.
|
5
|
Waites KB, Xiao L, Liu Y, Balish MF and
Atkinson TP: Mycoplasma pneumoniae from the respiratory
tract and beyond. Clin Microbiol Rev. 30:747–809. 2017. View Article : Google Scholar : PubMed/NCBI
|
6
|
Rogozinski LE, Alverson BK and Biondi EA:
Diagnosis and treatment of Mycoplasma pneumoniae in
children. Minerva Pediatrica. 69:156–160. 2017.PubMed/NCBI
|
7
|
Izumikawa K: Clinical features of severe
or fatal Mycoplasma pneumoniae pneumonia. Front Microbiol.
7:8002016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Shin JE, Cheon BR, Shim JW, Kim DS, Jung
HL, Park MS and Shim JY: Increased risk of refractory Mycoplasma
pneumoniae pneumonia in children with atopic sensitization and
asthma. Korean J Pediatr. 57:271–277. 2014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Bajantri B, Venkatram S and Diaz-Fuentes
G: Mycoplasma pneumoniae: A potentially severe infection. J
Clin Med Res. 10:535–544. 2018. View Article : Google Scholar : PubMed/NCBI
|
10
|
Morozumi M, Hasegawa K, Kobayashi R, Inoue
N, Iwata S, Kuroki H, Kawamura N, Nakayama E, Tajima T, Shimizu K
and Ubukata K: Emergence of macrolide-resistant Mycoplasma
pneumoniae with a 23S rRNA gene mutation. Antimicrob Agents
Chemother. 49:2302–2306. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Matsuoka M, Narita M, Okazaki N, Ohya H,
Yamazaki T, Ouchi K, Suzuki I, Andoh T, Kenri T, Sasaki Y, et al:
Characterization and molecular analysis of macrolide-resistant
Mycoplasma pneumoniae clinical isolates obtained in Japan.
Antimicrob Agents Chemother. 48:4624–4630. 2004. View Article : Google Scholar : PubMed/NCBI
|
12
|
Oishi T, Narita M, Matsui K, Shirai T,
Matsuo M, Negishi J, Kaneko T, Tsukano S, Taguchi T and Uchiyama M:
Clinical implications of interleukin-18 levels in pediatric
patients with Mycoplasma pneumoniae pneumonia. J Infect
Chemother. 17:803–806. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zhou YJ, Wang J, Chen WJ, Shen N, Tao Y,
Zhao RK, Luo LJ, Li BR and Cao Q: Impact of viral coinfection and
macrolide-resistant mycoplasma infection in children with
refractory Mycoplasma pneumoniae pneumonia. BMC Infect Dis.
20:6332020. View Article : Google Scholar : PubMed/NCBI
|
14
|
Li MS, Liu YL, Zhang XL, Liu J and Wang P:
Transcriptomic analysis of high-throughput sequencing about
circRNA, lncRNA and mRNA in bladder cancer. Gene. 677:189–197.
2018. View Article : Google Scholar : PubMed/NCBI
|
15
|
Beermann J, Piccoli MT, Viereck J and Thum
T: Non-coding RNAs in development and disease: Background,
mechanisms, and therapeutic approaches. Physiol Rev. 96:1297–1325.
2016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Meng S, Zhou H, Feng Z, Xu Z, Tang Y, Li P
and Wu M: CircRNA: Functions and properties of a novel potential
biomarker for cancer. Mol Cancer. 16:942017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhang HD, Jiang LH, Sun DW, Hou JC and Ji
ZL: CircRNA: A novel type of biomarker for cancer. Breast Cancer.
25:1–7. 2018. View Article : Google Scholar : PubMed/NCBI
|
18
|
Wu H, Wu S, Zhu Y, Ye M, Shen J, Liu Y,
Zhang YS and Bu S: Hsa_circRNA_0054633 is highly expressed in
gestational diabetes mellitus and closely related to glycosylation
index. Clin Epigenetics. 11:222019. View Article : Google Scholar : PubMed/NCBI
|
19
|
Cui X, Niu W, Kong L, He M, Jiang K, Chen
S, Zhong A, Li W, Lu J and Zhang L: hsa_circRNA_103636: Potential
novel diagnostic and therapeutic biomarker in major depressive
disorder. Biomarkers Med. 10:943–952. 2016. View Article : Google Scholar : PubMed/NCBI
|
20
|
Lee YC, Chang CH, Lee WJ, Liu TY, Tsai CM,
Tsai TA, Tsai CK, Kuo KC, Chen CC, Niu CK and Yu HR: Altered
chemokine profile in Refractory Mycoplasma pneumoniae
pneumonia infected children. J Microbiol Immunol Infect.
S1684-S1182(20)30090-30096. 2020.
|
21
|
Kim D, Langmead B and Salzberg S: HISAT: A
fast spliced aligner with low memory requirements. Nat Methods.
12:357–360. 2015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Anders S, Pyl PT and Huber W: HTSeq-a
Python framework to work with high-throughput sequencing data.
Bioinformatics. 31:166–169. 2015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Love MI, Huber W and Anders S: Moderated
estimation of fold change and dispersion for RNA-seq data with
DESeq2. Genome Biol. 15:5502014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Memczak S, Jens M, Elefsinioti A, Torti F,
Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer
M, et al: Circular RNAs are a large class of animal RNAs with
regulatory potency. Nature. 495:333–338. 2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Gao Y, Wang J and Zhao F: CIRI: An
efficient and unbiased algorithm for de novo circular RNA
identification. Genome Biol. 16:42015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Young MD, Wakefield MJ, Smyth GK and
Oshlack A: Gene ontology analysis for RNA-seq: Accounting for
selection bias. Genome Biol. 11:R142010. View Article : Google Scholar : PubMed/NCBI
|
27
|
Kanehisa M, Araki M, Goto S, Hattori M,
Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T
and Yamanishi Y: KEGG for linking genomes to life and the
environment. Nucleic Acids Res. 36:D480–D484. 2008. View Article : Google Scholar : PubMed/NCBI
|
28
|
Xie C, Mao X, Huang J, Ding Y, Wu J, Dong
S, Kong L, Gao G, Li CY and Wei L: KOBAS 2.0: A web server for
annotation and identification of enriched pathways and diseases.
Nucleic Acids Res. 39:W316–W322. 2011. View Article : Google Scholar : PubMed/NCBI
|
29
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Liu S, Xie X, Lei H, Zou B and Xie L:
Identification of key circRNAs/lncRNAs/miRNAs/mRNAs and pathways in
preeclampsia using bioinformatics analysis. Med Sci Monit.
25:1679–1693. 2019. View Article : Google Scholar : PubMed/NCBI
|
31
|
Chaudhry R, Ghosh A and Chandolia A:
Pathogenesis of Mycoplasma pneumoniae: An update. Indian J
Med Microbiol. 34:7–16. 2016. View Article : Google Scholar : PubMed/NCBI
|
32
|
Rumzhum NN and Ammit AJ: Cyclooxygenase 2:
Its regulation, role and impact in airway inflammation. Clin Exp
Allergy. 46:397–410. 2016. View Article : Google Scholar : PubMed/NCBI
|
33
|
Cavallaro EC, Liang KK, Lawrence MD,
Forsyth KD and Dixon DL: Neutrophil infiltration and activation in
bronchiolitic airways are independent of viral etiology. Pediatr
Pulmonol. 52:238–246. 2017. View Article : Google Scholar : PubMed/NCBI
|
34
|
Maurus K, Hufnagel A, Geiger F, Graf S,
Berking C, Heinemann A, Paschen A, Kneitz S, Stigloher C,
Geissinger E, et al: The AP-1 transcription factor FOSL1 causes
melanocyte reprogramming and transformation. Oncogene.
36:5110–5121. 2017. View Article : Google Scholar : PubMed/NCBI
|
35
|
Hu Y, Shen F, Crellin NK and Ouyang W: The
IL-17 pathway as a major therapeutic target in autoimmune diseases.
Ann N Y Acad Sci. 1217:60–76. 2011. View Article : Google Scholar : PubMed/NCBI
|
36
|
McHeyzer-Williams M, Okitsu S, Wang N and
McHeyzer-Williams L: Molecular programming of B cell memory. Nature
Rev Immunol. 12:24–34. 2011. View Article : Google Scholar : PubMed/NCBI
|
37
|
Chen Q, Jiang S, Liu H, Gao Y, Yang X, Ren
Z, Gao Y, Xiao L, Hu H, Yu Y, et al: Association of lncRNA
SH3PXD2A-AS1 with preeclampsia and its function in invasion and
migration of placental trophoblast cells. Cell Death Dis.
11:5832020. View Article : Google Scholar : PubMed/NCBI
|
38
|
Cardenas-Rodriguez M, Irigoín F, Osborn
DP, Gascue C, Katsanis N, Beales PL and Badano JL: The Bardet-Biedl
syndrome-related protein CCDC28B modulates mTORC2 function and
interacts with SIN1 to control cilia length independently of the
mTOR complex. Hum Mol Genet. 22:4031–4042. 2013. View Article : Google Scholar : PubMed/NCBI
|
39
|
Zhu X, Zhang J, Fan W, Gong Y, Yan J, Yuan
Z, Wu L, Cui H, Luo H, Kong Q, et al: MAPKAP1 rs10118570
polymorphism is associated with anti-infection and anti-hepatic
fibrogenesis in schistosomiasis japonica. PLoS One. 9:e1059952014.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Sloan KE, Bohnsack MT and Watkins NJ: The
5S RNP couples p53 homeostasis to ribosome biogenesis and nucleolar
stress. Cell Rep. 5:237–247. 2013. View Article : Google Scholar : PubMed/NCBI
|
41
|
Zhong J, Chen YJ, Chen L, Shen YY, Zhang
QH, Yang J, Cao RX, Zu XY and Wen GB: PRMT2β, a C-terminal splice
variant of PRMT2, inhibits the growth of breast cancer cells. Oncol
Rep. 38:1303–1311. 2017. View Article : Google Scholar : PubMed/NCBI
|
42
|
Finney AC, Funk SD, Green JM, Yurdagul A
Jr, Rana MA, Pistorius R, Henry M, Yurochko A, Pattillo CB, Traylor
JG, et al: EphA2 expression regulates inflammation and
fibroproliferative remodeling in atherosclerosis. Circulation.
136:566–582. 2017. View Article : Google Scholar : PubMed/NCBI
|
43
|
Li XQ, Song JY, Lv W, Zhang D and Wu JZ:
Circular circ_0000885 promotes hepatocellular carcinoma
proliferation by epigenetically upregulating caprin1. Eur Rev Med
Pharmacol Sci. 23:7848–7854. 2019.PubMed/NCBI
|
44
|
Miller SE, Sahlender DA, Graham SC, Höning
S, Robinson MS, Peden AA and Owen DJ: The molecular basis for the
endocytosis of small R-SNAREs by the clathrin adaptor CALM. Cell.
147:1118–1131. 2011. View Article : Google Scholar : PubMed/NCBI
|