1
|
Falcão-Pires I and Leite Moreira AF:
Diabetic cardiomyopathy: Understanding the molecular and cellular
basis to progress in diagnosis and treatment. Heart Fail Rev.
17:325–344. 2012. View Article : Google Scholar : PubMed/NCBI
|
2
|
Jia G, Hill MA and Sowers JR: Diabetic
cardiomyopathy: An update of mechanisms contributing to this
clinical entity. Circ Res. 122:624–638. 2018. View Article : Google Scholar : PubMed/NCBI
|
3
|
Kaludercic N and Di Lisa F: Mitochondrial
ROS formation in the pathogenesis of diabetic cardiomyopathy. Front
Cardiovasc Med. 7:122020. View Article : Google Scholar : PubMed/NCBI
|
4
|
Jia G, DeMarco VG and Sowers JR: Insulin
resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nat
Rev Endocrinol. 12:144–153. 2016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Brinkmann JF, Abumrad NA, Ibrahimi A,
vander Vusse GJ and Glatz JF: New insights into long-chain fatty
acid uptake by heart muscle: A crucial role for fatty acid
translocase/CD36. Biochem J. 367:561–570. 2002. View Article : Google Scholar : PubMed/NCBI
|
6
|
Griffin E, Re A, Hamel N, Fu C, Bush H,
McCaffrey T and Asch AS: A link between diabetes and
atherosclerosis: Glucose regulates expression of CD36 at the level
of translation. Nat Med. 7:840–846. 2001. View Article : Google Scholar : PubMed/NCBI
|
7
|
Hou Y, Wu M, Wei J, Ren Y, Du C, Wu H, Li
Y and Shi Y: CD36 is involved in high glucose-induced epithelial to
mesenchymal transition in renal tubular epithelial cells. Biochem
Biophys Res Commun. 468:281–286. 2015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Lu H, Yao K, Huang D, Sun A, Zou Y, Qian J
and Ge J: High glucose induces upregulation of scavenger receptors
and promotes maturation of dendritic cells. Cardiovasc Diabetol.
12:802013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Sheedy FJ, Grebe A, RaynerK J, Kalantari
P, Ramkhelawon B, Carpenter SB, Becker CE, Ediriweera HN, Mullick
AE, Golenbock DT, et al: CD36 coordinates NLRP3 inflammasome
activation by facilitating intracellular nucleation of soluble
ligands into particulate ligands in sterile inflammation. Nat
Immunol. 14:812–820. 2013. View
Article : Google Scholar : PubMed/NCBI
|
10
|
Chen Y, Yang M, Huang W, Chen W, Zhao Y,
Schulte ML, Volberding P, Gerbec Z, Zimmermann MT, Zeighami A, et
al: Mitochondrial metabolic reprogramming by CD36 signaling drives
macrophage inflammatory responses. Circ Res. 125:1087–1102. 2019.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Bhat A, Das S, Yadav G, Chaudhary S, Vyas
A, Islam M, Gupta AC, Bajpai M, Maiwall R, Maras JS and Sarin SK:
Hyperoxidized albumin modulates platelets and promotes inflammation
through CD36 receptor in severe alcoholic hepatitis. Hepatol
Commun. 4:50–65. 2020. View Article : Google Scholar : PubMed/NCBI
|
12
|
Yang X, Okamura DM, Lu X, Chen Y, Moorhead
J, Varghese Z and Ruan XZ: CD36 in chronic kidney disease: Novel
insights and therapeutic opportunities. Nat Rev Nephrol.
13:769–781. 2017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Kunz A, Abe T, Hochrainer K, Shimamura M,
Anrather J, Racchumi G, Zhou P and Iadecola C: Nuclear
factor-kappaB activation and postischemic inflammation are
suppressed in CD36-null mice after middle cerebral artery
occlusion. J Neurosci. 28:1649–1658. 2008. View Article : Google Scholar : PubMed/NCBI
|
14
|
Cao D, Luo J, Zang W, Chen D, Xu H, Shi H
and Jing X: Gamma-linolenic acid suppresses NF-κΒ signaling via
CD36 in the lipopolysaccharide-induced inflammatory response in
primary goat mammary gland epithelial cells. Inflammation.
39:1225–1237. 2016.PubMed/NCBI
|
15
|
Sp N, Kang DK, Kim DH, Park JH, Lee HG,
Kim HJ, Darvin P, Park YM and Yang YM: Inhibits CD36-dependent
tumor angiogenesis, migration, invasion, and sphere formation
through the Cd36/Stat3/Nf-Κb signaling axis. Nutrients. 10:7722018.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Zhao L, Zhang C, Luo X, Wang P, Zhou W,
Zhong S, Xie Y, Jiang Y, Yang P, Tang R, et al: CD36 palmitoylation
disrupts free fatty acid metabolism and promotes tissue
inflammation in non-alcoholic steatohepatitis. J Hepatol.
69:705–717. 2018. View Article : Google Scholar : PubMed/NCBI
|
17
|
Hou Y, Shi Y, Han B, Liu X, Qiao X, Qi Y
and Wang L: The antioxidant peptide SS31 prevents oxidative stress,
downregulates CD36 and improves renal function in diabetic
nephropathy. Nephrol Dial Transplant. 33:1908–1918. 2018.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PcR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Ruderman N, Carling D, Prentki M and
Cacicedo J: AMPK, insulin resistance, and the metabolic syndrome. J
Clin Invest. 123:2764–2772. 2013. View
Article : Google Scholar : PubMed/NCBI
|
20
|
Ramírez E, Picatoste B, González-Bris A,
Oteo M, Cruz F, Caro-Vadillo A, Egido J, Tuñón J, Morcillo MA and
Lorenzo Ó: Sitagliptin improved glucose assimilation in detriment
of fatty-acid utilization in experimental type-II diabetes: Role of
GLP-1 isoforms in Glut4 receptor trafficking. Cardiovasc Diabetol.
17:122018. View Article : Google Scholar : PubMed/NCBI
|
21
|
Palomer X, Salvadó L, Barroso E and
Vázquez-Carrera M: An overview of the crosstalk between
inflammatory processes and metabolic dysregulation during diabetic
cardiomyopathy. Int J Cardiol. 168:3160–3172. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Koonen DP, Sung MM, Kao CK, Dolinsky VW,
Koves TR, Ilkayeva O, Jacobs RL, Vance DE, Light PE, Muoio DM, et
al: Alterations in skeletal muscle fatty acid handling predisposes
middle-aged mice to diet-induced insulin resistance. Diabetes.
59:1366–1375. 2003. View Article : Google Scholar : PubMed/NCBI
|
23
|
Abumrad NA and Goldberg IJ: CD36 actions
in the heart: Lipids, calcium, inflammation, repair and more?
Biochim Biophys Acta. 1861:1442–1449. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Han L, Yang Q, Li J, Cheng F, Zhang Y, Li
Y and Wang M: Protocatechuic acid-ameliorated endothelial oxidative
stress through regulating acetylation level via CD36/AMPK pathway.
J Agric Food Chem. 67:7060–7072. 2019. View Article : Google Scholar : PubMed/NCBI
|
25
|
Li W, Febbraio M, Reddy SP, Yu DY,
Yamamoto M and Silverstein RL: CD36 participates in a signaling
pathway that regulates ROS formation in murine VSMCs. J Clin
Invest. 120:3996–4006. 2010. View
Article : Google Scholar : PubMed/NCBI
|
26
|
Liang E, Liu X, Du Z, Yang R and Zhao Y:
Andrographolide ameliorates diabetic cardiomyopathy in mice by
blockage of oxidative damage and NF-κB-mediated inflammation. Oxid
Med Cell Longev. 2018:90867472018. View Article : Google Scholar : PubMed/NCBI
|
27
|
Morgan M and Liu Z: Crosstalk of reactive
oxygen species and NF-κB signaling. Cell Res. 21:103–115. 2011.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Frati G, Schirone L, Chimenti I, Yee D,
Biondi-Zoccai G, Volpe M and Sciarretta S: An overview of the
inflammatory signalling mechanisms in the myocardium underlying the
development of diabetic cardiomyopathy. Cardiovasc Res.
113:378–388. 2017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Febbraio M, Hajjar DP and Silverstein RL:
CD36: A class B scavenger receptor involved in angiogenesis,
atherosclerosis, inflammation and lipid metabolism. J Clin Invest.
108:785–791. 2001. View
Article : Google Scholar : PubMed/NCBI
|
30
|
Lisa S, Winer P and Wu M: Rapid analysis
of glycolytic and oxidative substrate flux of cancer cells in a
microplate. PLoS One. 9:e1099162014. View Article : Google Scholar : PubMed/NCBI
|
31
|
Day EA, Ford RJ and Steinberg GR: AMPK as
a therapeutic target for treating metabolic diseases. Trends
Endocrinol Metab. 28:545–560. 2017. View Article : Google Scholar : PubMed/NCBI
|
32
|
Samovski D, Sun J, Pietka T, Gross RM,
Eckel RH, Su X, Stahl PD and Abumrad NA: Regulation of AMPK
activation by CD36 links fatty acid uptake to β-oxidation.
Diabetes. 64:353–359. 2015. View Article : Google Scholar : PubMed/NCBI
|
33
|
Shrikanth CB and Nandini CD: AMPK in
microvascular complications of diabetes and the beneficial effects
of AMPK activators from plants. Phytomedicine.
24:1528082018.PubMed/NCBI
|
34
|
Glatz JFC, Luiken JJFP and Nabben M: CD36
(SR-B2) as a target to treat lipid overload-induced cardiac
dysfunction. J Lipid Atheroscler. 9:66–78. 2020. View Article : Google Scholar : PubMed/NCBI
|
35
|
Li Y, Yang P, Zhao L, Chen Y, Zhang X,
Zeng S, Wei L, Varghese Z, Moorhead JF, Chen Y and Ruan XZ: CD36
plays a negative role in the regulation of lipophagy in hepatocytes
through an AMPK-dependent pathway. J Lipid Res. 60:844–855. 2019.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Zhu Y, Qian X, Li J, Lin X, Luo J, Huang J
and Jin Z: Astragaloside-IV protects H9C2(2-1) cardiomyocytes from
high glucose-induced injury via miR-34a-mediated autophagy pathway.
Artif Cells Nanomed Biotechnol. 47:4172–4181. 2019. View Article : Google Scholar : PubMed/NCBI
|
37
|
Ma L, Cao Y, Zhang L, Li K, Pan Y and Zhu
J: Celastrol mitigates high glucose-induced inflammation and
apoptosis in rat H9c2 cardiomyocytes via miR-345-5p/growth
arrest-specific 6. J Gene Med. 22:e32012020. View Article : Google Scholar : PubMed/NCBI
|
38
|
Huang Z, Dong X, Zhuang X, Hu X, Wang L
and Liao X: Exogenous hydrogen sulfide protects against high
glucose-induced inflammation and cytotoxicity in H9c2 cardiac
cells. Mol Med Rep. 14:4911–4917. 2016. View Article : Google Scholar : PubMed/NCBI
|
39
|
Zhao MX, Zhou B, Ling L, Xiong XQ, Zhang
F, Chen Q, Li YH, Kang YM and Zhu GQ: Salusin-β contributes to
oxidative stress and inflammation in diabetic cardiomyopathy. Cell
Death Dis. 8:e26902017. View Article : Google Scholar : PubMed/NCBI
|
40
|
Kotla S and Rao GN: Reactive oxygen
species (ROS) mediate p300-dependent STAT1 protein interaction with
peroxisome proliferator-activated receptor (PPAR)-γ in CD36 protein
expression and foam cell formation. J Biol Chem. 290:30306–30320.
2015. View Article : Google Scholar : PubMed/NCBI
|