Overview of the molecular mechanisms contributing to the formation of cancer‑associated adipocytes (Review)
- Authors:
- Yunpeng Tang
- Wenkai Zhang
- Tianqiang Sheng
- Xi He
- Xiangyang Xiong
-
Affiliations: Second Clinical Medical School, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China - Published online on: September 3, 2021 https://doi.org/10.3892/mmr.2021.12408
- Article Number: 768
-
Copyright: © Tang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Montel V, Mose ES and Tarin D: Tumor-stromal interactions reciprocally modulate gene expression patterns during carcinogenesis and metastasis. Int J Cancer. 119:251–263. 2006. View Article : Google Scholar : PubMed/NCBI | |
Vandeweyer E and Hertens D: Quantification of glands and fat in breast tissue: An experimental determination. Ann Anat. 184:181–184. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ramsay DT, Kent JC, Hartmann RA and Hartmann PE: Anatomy of the lactating human breast redefined with ultrasound imaging. J Anat. 206:525–534. 2005. View Article : Google Scholar : PubMed/NCBI | |
Luo L and Liu M: Adipose tissue in control of metabolism. J Endocrinol. 231:R77–R99. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang YX, Zhu N, Zhang CJ, Wang YK, Wu HT, Li Q, Du K, Liao DF and Qin L: Friend or foe: Multiple roles of adipose tissue in cancer formation and progression. J Cell Physiol. 234:21436–21449. 2019. View Article : Google Scholar : PubMed/NCBI | |
Iyengar NM, Zhou XK, Mendieta H, Giri DD, El-Hely O, Winston L, Falcone DJ, Wang H, Meng L, Landa J, et al: Effects of adiposity and exercise on breast tissue and systemic metabo-inflammatory factors in women at high risk or diagnosed with breast cancer. Cancer Prev Res (Phila). 14:541–550. 2021. View Article : Google Scholar : PubMed/NCBI | |
Nieman KM, Romero IL, Van Houten B and Lengyel E: Adipose tissue and adipocytes support tumorigenesis and metastasis. Biochim Biophys Acta. 1831:1533–1541. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhao C, Wu M, Zeng N, Xiong M, Hu W, Lv W, Yi Y, Zhang Q and Wu Y: Cancer-associated adipocytes: Emerging supporters in breast cancer. J Exp Clin Cancer Res. 39:1562020. View Article : Google Scholar : PubMed/NCBI | |
Uehara H, Kobayashi T, Matsumoto M, Watanabe S, Yoneda A and Bando Y: Adipose tissue: Critical contributor to the development of prostate cancer. J Med Invest. 65:9–17. 2018. View Article : Google Scholar : PubMed/NCBI | |
Picon-Ruiz M, Marchal JA and Slingerland JM: Obtaining human breast adipose cells for breast cancer cell co-culture studies. STAR Protoc. 1:1001972020. View Article : Google Scholar : PubMed/NCBI | |
Wu Q, Li B, Li Z, Li J and Sun S and Sun S: Cancer-associated adipocytes: Key players in breast cancer progression. J Hematol Oncol. 12:952019. View Article : Google Scholar : PubMed/NCBI | |
Dirat B, Bochet L, Dabek M, Daviaud D, Dauvillier S, Majed B, Wang YY, Meulle A, Salles B, Le Gonidec S, et al: Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res. 71:2455–2465. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kokabu S, Lowery JW and Jimi E: Cell fate and differentiation of bone marrow mesenchymal stem cells. Stem Cells Int. 2016:37535812016. View Article : Google Scholar : PubMed/NCBI | |
Ridge SM, Sullivan FJ and Glynn SA: Mesenchymal stem cells: Key players in cancer progression. Mol Cancer. 16:312017. View Article : Google Scholar : PubMed/NCBI | |
Han Y, Li X, Zhang Y, Han Y, Chang F and Ding J: Mesenchymal stem cells for regenerative medicine. Cells. 8:8862019. View Article : Google Scholar : PubMed/NCBI | |
Chen Q, Shou P, Zheng C, Jiang M, Cao G, Yang Q, Cao J, Xie N, Velletri T, Zhang X, et al: Fate decision of mesenchymal stem cells: Adipocytes or osteoblasts? Cell Death Differ. 23:1128–1139. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shepherd PR, Gnudi L, Tozzo E, Yang H, Leach F and Kahn BB: Adipose cell hyperplasia and enhanced glucose disposal in transgenic mice overexpressing GLUT4 selectively in adipose tissue. J Biol Chem. 268:22243–22246. 1993. View Article : Google Scholar : PubMed/NCBI | |
Huang HY, Hu LL, Song TJ, Li X, He Q, Sun X, Li YM, Lu HJ, Yang PY and Tang QQ: Involvement of cytoskeleton-associated proteins in the commitment of C3H10T1/2 pluripotent stem cells to adipocyte lineage induced by BMP2/4. Mol Cell Proteomics. 10:M110.002691. 2011. View Article : Google Scholar | |
de Winter TJ and Nusse R: Running against the Wnt: How Wnt/β-catenin suppresses adipogenesis. Front Cell Dev Biol. 9:6274292021. View Article : Google Scholar : PubMed/NCBI | |
Huang H, Song TJ, Li X, Hu L, He Q, Liu M, Lane MD and Tang QQ: BMP signaling pathway is required for commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. Proc Natl Acad Sci USA. 106:12670–12675. 2009. View Article : Google Scholar : PubMed/NCBI | |
Tang QQ and Lane MD: Adipogenesis: From stem cell to adipocyte. Annu Rev Biochem. 81:715–736. 2012. View Article : Google Scholar : PubMed/NCBI | |
Farmer SR: Transcriptional control of adipocyte formation. Cell Metab. 4:263–273. 2006. View Article : Google Scholar : PubMed/NCBI | |
Nielsen R, Pedersen TA, Hagenbeek D, Moulos P, Siersbaek R, Megens E, Denissov S, Børgesen M, Francoijs KJ, Mandrup S and Stunnenberg HG: Genome-wide profiling of PPARgamma:RXR and RNA polymerase II occupancy reveals temporal activation of distinct metabolic pathways and changes in RXR dimer composition during adipogenesis. Genes Dev. 22:2953–2967. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lefterova MI, Zhang Y, Steger DJ, Schupp M, Schug J, Cristancho A, Feng D, Zhuo D, Stoeckert CJ Jr, Liu XS and Lazar MA: PPARgamma and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genome-wide scale. Genes Dev. 22:2941–2952. 2008. View Article : Google Scholar : PubMed/NCBI | |
Rosen ED, Walkey CJ, Puigserver P and Spiegelman BM: Transcriptional regulation of adipogenesis. Genes Dev. 14:1293–1307. 2000.PubMed/NCBI | |
Kaestner KH, Christy RJ, McLenithan JC, Braiterman LT, Cornelius P, Pekala PH and Lane MD: Sequence, tissue distribution, and differential expression of mRNA for a putative insulin-responsive glucose transporter in mouse 3T3-L1 adipocytes. Proc Natl Acad Sci USA. 86:3150–3154. 1989. View Article : Google Scholar : PubMed/NCBI | |
Hwang CS, Mandrup S, MacDougald OA, Geiman DE and Lane MD: Transcriptional activation of the mouse obese (ob) gene by CCAAT/enhancer binding protein alpha. Proc Natl Acad Sci USA. 93:873–877. 1996. View Article : Google Scholar : PubMed/NCBI | |
Hwang CS, Loftus TM, Mandrup S and Lane MD: Adipocyte differentiation and leptin expression. Annu Rev Cell Dev Biol. 13:231–259. 1997. View Article : Google Scholar : PubMed/NCBI | |
Soukas A, Socci ND, Saatkamp BD, Novelli S and Friedman JM: Distinct transcriptional profiles of adipogenesis in vivo and in vitro. J Biol Chem. 276:34167–34174. 2001. View Article : Google Scholar : PubMed/NCBI | |
Kim KH, Lee K, Moon YS and Sul HS: A cysteine-rich adipose tissue-specific secretory factor inhibits adipocyte differentiation. J Biol Chem. 276:11252–11256. 2001. View Article : Google Scholar : PubMed/NCBI | |
Chang E and Kim CY: Natural products and obesity: A focus on the regulation of mitotic clonal expansion during adipogenesis. Molecules. 24:11572019. View Article : Google Scholar : PubMed/NCBI | |
Park A, Kim WK and Bae KH: Distinction of white, beige and brown adipocytes derived from mesenchymal stem cells. World J Stem Cells. 6:33–42. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lapeire L, Hendrix A, Lambein K, Van Bockstal M, Braems G, Van Den Broecke R, Limame R, Mestdagh P, Vandesompele J, Vanhove C, et al: Cancer-associated adipose tissue promotes breast cancer progression by paracrine oncostatin M and Jak/STAT3 signaling. Cancer Res. 74:6806–6819. 2014. View Article : Google Scholar : PubMed/NCBI | |
Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt MR, Romero IL, Carey MS, Mills GB, Hotamisligil GS, et al: Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med. 17:1498–1503. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wu Q, Li J, Li Z, Sun S, Zhu S, Wang L, Wu J, Yuan J, Zhang Y, Sun S and Wang C: Exosomes from the tumour-adipocyte interplay stimulate beige/brown differentiation and reprogram metabolism in stromal adipocytes to promote tumour progression. J Exp Clin Cancer Res. 38:2232019. View Article : Google Scholar : PubMed/NCBI | |
Balaban S, Shearer RF, Lee LS, van Geldermalsen M, Schreuder M, Shtein HC, Cairns R, Thomas KC, Fazakerley DJ, Grewal T, et al: Adipocyte lipolysis links obesity to breast cancer growth: Adipocyte-derived fatty acids drive breast cancer cell proliferation and migration. Cancer Metab. 5:12017. View Article : Google Scholar : PubMed/NCBI | |
Notarnicola M, Miccolis A, Tutino V, Lorusso D and Caruso MG: Low levels of lipogenic enzymes in peritumoral adipose tissue of colorectal cancer patients. Lipids. 47:59–63. 2012. View Article : Google Scholar : PubMed/NCBI | |
Choi J, Cha YJ and Koo JS: Adipocyte biology in breast cancer: From silent bystander to active facilitator. Prog Lipid Res. 69:11–20. 2018. View Article : Google Scholar : PubMed/NCBI | |
Fujisaki K, Fujimoto H, Sangai T, Nagashima T, Sakakibara M, Shiina N, Kuroda M, Aoyagi Y and Miyazaki M: Cancer-mediated adipose reversion promotes cancer cell migration via IL-6 and MCP-1. Breast Cancer Res Treat. 150:255–263. 2015. View Article : Google Scholar : PubMed/NCBI | |
D'Esposito V, Liguoro D, Ambrosio MR, Collina F, Cantile M, Spinelli R, Raciti GA, Miele C, Valentino R, Campiglia P, et al: Adipose microenvironment promotes triple negative breast cancer cell invasiveness and dissemination by producing CCL5. Oncotarget. 7:24495–24509. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kim EJ, Kim YK, Kim S, Kim JE, Tian YD, Doh EJ, Lee DH and Chung JH: Adipochemokines induced by ultraviolet irradiation contribute to impaired fat metabolism in subcutaneous fat cells. Br J Dermatol. 178:492–501. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Wu Y, Zhang C, Zhou C, Li Y, Zeng Y, Zhang C, Li R, Luo D, Wang L, et al: Cancer-associated adipocytes-derived G-CSF promotes breast cancer malignancy via Stat3 signaling. J Mol Cell Biol. 12:723–737. 2020. View Article : Google Scholar : PubMed/NCBI | |
Andarawewa KL, Motrescu ER, Chenard MP, Gansmuller A, Stoll I, Tomasetto C and Rio MC: Stromelysin-3 is a potent negative regulator of adipogenesis participating to cancer cell-adipocyte interaction/crosstalk at the tumor invasive front. Cancer Res. 65:10862–10871. 2005. View Article : Google Scholar : PubMed/NCBI | |
Iyengar P, Espina V, Williams TW, Lin Y, Berry D, Jelicks LA, Lee H, Temple K, Graves R, Pollard J, et al: Adipocyte-derived collagen VI affects early mammary tumor progression in vivo, demonstrating a critical interaction in the tumor/stroma microenvironment. J Clin Invest. 115:1163–1176. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bochet L, Lehuédé C, Dauvillier S, Wang YY, Dirat B, Laurent V, Dray C, Guiet R, Maridonneau-Parini I, Le Gonidec S, et al: Adipocyte-derived fibroblasts promote tumor progression and contribute to the desmoplastic reaction in breast cancer. Cancer Res. 73:5657–5668. 2013. View Article : Google Scholar : PubMed/NCBI | |
Côté JA, Guénard F, Lessard J, Lapointe M, Biron S, Vohl MC and Tchernof A: Temporal changes in gene expression profile during mature adipocyte dedifferentiation. Int J Genomics. 2017:51493622017. View Article : Google Scholar : PubMed/NCBI | |
Wei X, Li S, He J, Du H, Liu Y, Yu W, Hu H, Han L, Wang C, Li H, et al: Tumor-secreted PAI-1 promotes breast cancer metastasis via the induction of adipocyte-derived collagen remodeling. Cell Commun Signal. 17:582019. View Article : Google Scholar : PubMed/NCBI | |
Master SR, Hartman JL, D'Cruz CM, Moody SE, Keiper EA, Ha SI, Cox JD, Belka GK and Chodosh LA: Functional microarray analysis of mammary organogenesis reveals a developmental role in adaptive thermogenesis. Mol Endocrinol. 16:1185–1203. 2002. View Article : Google Scholar : PubMed/NCBI | |
Wang F, Gao S, Chen F, Fu Z, Yin H, Lu X, Yu J and Lu C: Mammary fat of breast cancer: Gene expression profiling and functional characterization. PLoS One. 9:e1097422014. View Article : Google Scholar : PubMed/NCBI | |
Tsoli M, Schweiger M, Vanniasinghe AS, Painter A, Zechner R, Clarke S and Robertson G: Depletion of white adipose tissue in cancer cachexia syndrome is associated with inflammatory signaling and disrupted circadian regulation. PLoS One. 9:e929662014. View Article : Google Scholar : PubMed/NCBI | |
Wu Q, Sun S, Li Z, Yang Q, Li B, Zhu S, Wang L, Wu J, Yuan J, Yang C, et al: Tumour-originated exosomal miR-155 triggers cancer-associated cachexia to promote tumour progression. Mol Cancer. 17:1552018. View Article : Google Scholar : PubMed/NCBI | |
Guerrero J, Tobar N, Cáceres M, Espinoza L, Escobar P, Dotor J, Smith PC and Martinez J: Soluble factors derived from tumor mammary cell lines induce a stromal mammary adipose reversion in human and mice adipose cells. Possible role of TGF-beta1 and TNF-alpha. Breast Cancer Res Treat. 119:497–508. 2010. View Article : Google Scholar : PubMed/NCBI | |
Stephens JM and Pekala PH: Transcriptional repression of the C/EBP-alpha and GLUT4 genes in 3T3-L1 adipocytes by tumor necrosis factor-alpha. Regulations is coordinate and independent of protein synthesis. J Biol Chem. 267:13580–13584. 1992. View Article : Google Scholar : PubMed/NCBI | |
Kim C, Lee H, Cho YM, Kwon OJ, Kim W and Lee EK: TNFalpha-induced miR-130 resulted in adipocyte dysfunction during obesity-related inflammation. FEBS Lett. 587:3853–3858. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lien CC, Au LC, Tsai YL, Ho LT and Juan CC: Short-term regulation of tumor necrosis factor-alpha-induced lipolysis in 3T3-L1 adipocytes is mediated through the inducible nitric oxide synthase/nitric oxide-dependent pathway. Endocrinology. 150:4892–4900. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ryden M, Dicker A, van Harmelen V, Hauner H, Brunnberg M, Perbeck L, Lonnqvist F and Arner P: Mapping of early signaling events in tumor necrosis factor-alpha -mediated lipolysis in human fat cells. J Biol Chem. 277:1085–1091. 2002. View Article : Google Scholar : PubMed/NCBI | |
Zhang HH, Halbleib M, Ahmad F, Manganiello VC and Greenberg AS: Tumor necrosis factor-alpha stimulates lipolysis in differentiated human adipocytes through activation of extracellular signal-related kinase and elevation of intracellular cAMP. Diabetes. 51:2929–2935. 2002. View Article : Google Scholar : PubMed/NCBI | |
Rydén M, Arvidsson E, Blomqvist L, Perbeck L, Dicker A and Arner P: Targets for TNF-alpha-induced lipolysis in human adipocytes. Biochem Biophys Res Commun. 318:168–175. 2004. View Article : Google Scholar : PubMed/NCBI | |
Souza SC, de Vargas LM, Yamamoto MT, Lien P, Franciosa MD, Moss LG and Greenberg AS: Overexpression of perilipin A and B blocks the ability of tumor necrosis factor alpha to increase lipolysis in 3T3-L1 adipocytes. J Biol Chem. 273:24665–24669. 1998. View Article : Google Scholar : PubMed/NCBI | |
Tsoli M and Robertson G: Cancer cachexia: Malignant inflammation, tumorkines, and metabolic mayhem. Trends Endocrinol Metab. 24:174–183. 2013. View Article : Google Scholar : PubMed/NCBI | |
Arner P and Langin D: Lipolysis in lipid turnover, cancer cachexia, and obesity-induced insulin resistance. Trends Endocrinol Metab. 25:255–262. 2014. View Article : Google Scholar : PubMed/NCBI | |
Petersen EW, Carey AL, Sacchetti M, Steinberg GR, Macaulay SL, Febbraio MA and Pedersen BK: Acute IL-6 treatment increases fatty acid turnover in elderly humans in vivo and in tissue culture in vitro. Am J Physiol Endocrinol Metab. 288:E155–E162. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ahmadian M, Abbott MJ, Tang T, Hudak CS, Kim Y, Bruss M, Hellerstein MK, Lee HY, Samuel VT, Shulman GI, et al: Desnutrin/ATGL is regulated by AMPK and is required for a brown adipose phenotype. Cell Metab. 13:739–748. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang YY, Attané C, Milhas D, Dirat B, Dauvillier S, Guerard A, Gilhodes J, Lazar I, Alet N, Laurent V, et al: Mammary adipocytes stimulate breast cancer invasion through metabolic remodeling of tumor cells. JCI Insight. 2:e874892017. View Article : Google Scholar : PubMed/NCBI | |
Ueki K, Kondo T and Kahn CR: Suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 cause insulin resistance through inhibition of tyrosine phosphorylation of insulin receptor substrate proteins by discrete mechanisms. Mol Cell Biol. 24:5434–5446. 2004. View Article : Google Scholar : PubMed/NCBI | |
Seale P, Conroe HM, Estall J, Kajimura S, Frontini A, Ishibashi J, Cohen P, Cinti S and Spiegelman BM: Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J Clin Invest. 121:96–105. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cannon B and Nedergaard J: Brown adipose tissue: Function and physiological significance. Physiol Rev. 84:277–359. 2004. View Article : Google Scholar : PubMed/NCBI | |
Lee J, Hong BS, Ryu HS, Lee HB, Lee M, Park IA, Kim J, Han W, Noh DY and Moon HG: Transition into inflammatory cancer-associated adipocytes in breast cancer microenvironment requires microRNA regulatory mechanism. PLoS One. 12:e01741262017. View Article : Google Scholar : PubMed/NCBI | |
Arora GK, Gupta A, Narayanan S, Guo T, Iyengar P and Infante RE: Cachexia-associated adipose loss induced by tumor-secreted leukemia inhibitory factor is counterbalanced by decreased leptin. JCI Insight. 3:e1212212018. View Article : Google Scholar : PubMed/NCBI | |
Zoico E, Darra E, Rizzatti V, Budui S, Franceschetti G, Mazzali G, Rossi AP, Fantin F, Menegazzi M, et al: Adipocytes WNT5a mediated dedifferentiation: a possible target in pancreatic cancer microenvironment. Oncotarget. 7:20223–20235. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kang MI, Baker AR, Dextras CR, Cabarcas SM, Young MR and Colburn NH: (2012). Targeting of Noncanonical Wnt5a Signaling by AP-1 Blocker Dominant-Negative Jun When It Inhibits Skin Carcinogenesis. Genes cancer. 3:37–50. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gustafson B and Smith U: Activation of canonical wingless-type MMTV integration site family (Wnt) signaling in mature adipocytes increases beta-catenin levels and leads to cell dedifferentiation and insulin resistance. J Biol Chem. 285:14031–14041. 2010. View Article : Google Scholar : PubMed/NCBI | |
Christodoulides C, Lagathu C, Sethi JK and Vidal-Puig A: Adipogenesis and WNT signalling. Trends Endocrinol Metab. 20:16–24. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zoico E, Darra E, Rizzatti V, Budui S, Franceschetti G, Mazzali G, Rossi AP, Fantin F, Menegazzi M, Cinti S and Zamboni M: Adipocytes WNT5a mediated dedifferentiation: A possible target in pancreatic cancer microenvironment. Oncotarget. 7:20223–20235. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bilkovski R, Schulte DM, Oberhauser F, Mauer J, Hampel B, Gutschow C, Krone W and Laudes M: Adipose tissue macrophages inhibit adipogenesis of mesenchymal precursor cells via wnt-5a in humans. Int J Obes (Lond). 35:1450–1454. 2011. View Article : Google Scholar : PubMed/NCBI | |
Klaus A and Birchmeier W: Wnt signalling and its impact on development and cancer. Nat Rev Cancer. 8:387–398. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bauer M, Bénard J, Gaasterland T, Willert K and Cappellen D: WNT5A encodes two isoforms with distinct functions in cancers. PLoS One. 8:e805262013. View Article : Google Scholar : PubMed/NCBI | |
Zhuang Y, Li X, Zhan P, Pi G and Wen G: MMP11 promotes the proliferation and progression of breast cancer through stabilizing Smad2 protein. Oncol Rep. 45:162021. View Article : Google Scholar : PubMed/NCBI | |
Rio MC: From a unique cell to metastasis is a long way to go: Clues to stromelysin-3 participation. Biochimie. 87:299–306. 2005. View Article : Google Scholar : PubMed/NCBI | |
Xu G, Zhang B, Ye J, Cao S, Shi J, Zhao Y, Wang Y, Sang J, Yao Y, Guan W, et al: Exosomal miRNA-139 in cancer-associated fibroblasts inhibits gastric cancer progression by repressing MMP11 expression. Int J Biol Sci. 15:2320–2329. 2019. View Article : Google Scholar : PubMed/NCBI | |
Motrescu ER, Blaise S, Etique N, Messaddeq N, Chenard MP, Stoll I, Tomasetto C and Rio MC: Matrix metalloproteinase-11/stromelysin-3 exhibits collagenolytic function against collagen VI under normal and malignant conditions. Oncogene. 27:6347–6355. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kozlova N, Jensen JK, Chi TF, Samoylenko A and Kietzmann T: PAI-1 modulates cell migration in a LRP1-dependent manner via β-catenin and ERK1/2. Thromb Haemost. 113:988–998. 2015. View Article : Google Scholar : PubMed/NCBI | |
Benesch MG, Ko YM, McMullen TP and Brindley DN: Autotaxin in the crosshairs: Taking aim at cancer and other inflammatory conditions. FEBS Lett. 588:2712–2727. 2014. View Article : Google Scholar : PubMed/NCBI | |
Brindley DN, Lin FT and Tigyi GJ: Role of the autotaxin-lysophosphatidate axis in cancer resistance to chemotherapy and radiotherapy. Biochim Biophys Acta. 1831:74–85. 2013. View Article : Google Scholar : PubMed/NCBI | |
Choi JW and Chun J: Lysophospholipids and their receptors in the central nervous system. Biochim Biophys Acta. 1831:20–32. 2013. View Article : Google Scholar : PubMed/NCBI | |
Samadi N, Bekele R, Capatos D, Venkatraman G, Sariahmetoglu M and Brindley DN: Regulation of lysophosphatidate signaling by autotaxin and lipid phosphate phosphatases with respect to tumor progression, angiogenesis, metastasis and chemo-resistance. Biochimie. 93:61–70. 2011. View Article : Google Scholar : PubMed/NCBI | |
So J, Wang FQ, Navari J, Schreher J and Fishman DA: LPA-induced epithelial ovarian cancer (EOC) in vitro invasion and migration are mediated by VEGF receptor-2 (VEGF-R2). Gynecol Oncol. 97:870–878. 2005. View Article : Google Scholar : PubMed/NCBI | |
Murph MM, Hurst-Kennedy J, Newton V, Brindley DN and Radhakrishna H: Lysophosphatidic acid decreases the nuclear localization and cellular abundance of the p53 tumor suppressor in A549 lung carcinoma cells. Mol Cancer Res. 5:1201–1211. 2007. View Article : Google Scholar : PubMed/NCBI | |
Popnikolov NK, Dalwadi BH, Thomas JD, Johannes GJ and Imagawa WT: Association of autotaxin and lysophosphatidic acid receptor 3 with aggressiveness of human breast carcinoma. Tumour Biol. 33:2237–2243. 2012. View Article : Google Scholar : PubMed/NCBI | |
Brindley DN, Tang X, Meng G and Benesch MGK: Role of adipose tissue-derived autotaxin, lysophosphatidate signaling, and inflammation in the progression and treatment of breast cancer. Int J Mol Sci. 21:59382020. View Article : Google Scholar : PubMed/NCBI | |
Benesch MG, Tang X, Maeda T, Ohhata A, Zhao YY, Kok BP, Dewald J, Hitt M, Curtis JM, McMullen TP and Brindley DN: Inhibition of autotaxin delays breast tumor growth and lung metastasis in mice. FASEB J. 28:2655–2666. 2014. View Article : Google Scholar : PubMed/NCBI | |
Benesch MG, Zhao YY, Curtis JM, McMullen TP and Brindley DN: Regulation of autotaxin expression and secretion by lysophosphatidate and sphingosine 1-phosphate. J Lipid Res. 56:1134–1144. 2015. View Article : Google Scholar : PubMed/NCBI | |
Benesch MG, Tang X, Dewald J, Dong WF, Mackey JR, Hemmings DG, McMullen TP and Brindley DN: Tumor-induced inflammation in mammary adipose tissue stimulates a vicious cycle of autotaxin expression and breast cancer progression. FASEB J. 29:3990–4000. 2015. View Article : Google Scholar : PubMed/NCBI | |
Russell ST, Zimmerman TP, Domin BA and Tisdale MJ: Induction of lipolysis in vitro and loss of body fat in vivo by zinc-alpha2-glycoprotein. Biochim Biophys Acta. 1636:59–68. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bing C, Bao Y, Jenkins J, Sanders P, Manieri M, Cinti S, Tisdale MJ and Trayhurn P: Zinc-alpha2-glycoprotein, a lipid mobilizing factor, is expressed in adipocytes and is up-regulated in mice with cancer cachexia. Proc Natl Acad Sci USA. 101:2500–2505. 2004. View Article : Google Scholar : PubMed/NCBI | |
Delort L, Perrier S, Dubois V, Billard H, Mracek T, Bing C, Vasson MP and Caldefie-Chézet F: Zinc-α2-glycoprotein: A proliferative factor for breast cancer? In vitro study and molecular mechanisms. Oncol Rep. 29:2025–2029. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhu H, Liu M, Zhang N, Pan H, Lin G, Li N, Wang L, Yang H, Yan K and Gong F: Circulating and adipose tissue mRNA levels of Zinc-α2-glycoprotein, leptin, high-molecular-weight adiponectin, and tumor necrosis factor-alpha in colorectal cancer patients with or without obesity. Front Endocrinol (Lausanne). 9:1902018. View Article : Google Scholar : PubMed/NCBI | |
Henshall SM, Horvath LG, Quinn DI, Eggleton SA, Grygiel JJ, Stricker PD, Biankin AV, Kench JG and Sutherland RL: Zinc-alpha2-glycoprotein expression as a predictor of metastatic prostate cancer following radical prostatectomy. J Natl Cancer Inst. 98:1420–1424. 2006. View Article : Google Scholar : PubMed/NCBI | |
Elattar S, Dimri M and Satyanarayana A: The tumor secretory factor ZAG promotes white adipose tissue browning and energy wasting. FASEB J. 32:4727–4743. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gong FY, Zhang SJ, Deng JY, Zhu HJ, Pan H, Li NS and Shi YF: Zinc-alpha2-glycoprotein is involved in regulation of body weight through inhibition of lipogenic enzymes in adipose tissue. Int J Obes (Lond). 33:1023–1030. 2009. View Article : Google Scholar : PubMed/NCBI | |
Xiao XH, Qi XY, Wang YD, Ran L, Yang J, Zhang HL, Xu CX, Wen GB and Liu JH: Zinc alpha2 glycoprotein promotes browning in adipocytes. Biochem Biophys Res Commun. 496:287–293. 2018. View Article : Google Scholar : PubMed/NCBI | |
Vlassov AV, Magdaleno S, Setterquist R and Conrad R: Exosomes: Current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta. 1820:940–948. 2012. View Article : Google Scholar : PubMed/NCBI | |
Minciacchi VR, Freeman MR and Di Vizio D: Extracellular vesicles in cancer: Exosomes, microvesicles and the emerging role of large oncosomes. Semin Cell Dev Biol. 40:41–51. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Liu L, Lin JZ, Aprahamian TR and Farmer SR: Browning of white adipose tissue with roscovitine induces a distinct population of UCP1(+) adipocytes. Cell Metab. 24:835–847. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tomasetti M, Nocchi L, Staffolani S, Manzella N, Amati M, Goodwin J, Kluckova K, Nguyen M, Strafella E, Bajzikova M, et al: MicroRNA-126 suppresses mesothelioma malignancy by targeting IRS1 and interfering with the mitochondrial function. Antioxid Redox Signal. 21:2109–2125. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fong MY, Zhou W, Liu L, Alontaga AY, Chandra M, Ashby J, Chow A, O'Connor ST, Li S, Chin AR, et al: Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat Cell Biol. 17:183–194. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yan W, Wu X, Zhou W, Fong MY, Cao M, Liu J, Liu X, Chen CH, Fadare O, Pizzo DP, et al: Cancer-cell-secreted exosomal miR-105 promotes tumour growth through the MYC-dependent metabolic reprogramming of stromal cells. Nat Cell Biol. 20:597–609. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Xu M, Li X, Su X, Xiao X, Keating A and Zhao RC: Exosomes released by hepatocarcinoma cells endow adipocytes with tumor-promoting properties. J Hematol Oncol. 11:822018. View Article : Google Scholar : PubMed/NCBI | |
Sagar G, Sah RP, Javeed N, Dutta SK, Smyrk TC, Lau JS, Giorgadze N, Tchkonia T, Kirkland JL, Chari ST and Mukhopadhyay D: Pathogenesis of pancreatic cancer exosome-induced lipolysis in adipose tissue. Gut. 65:1165–1174. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kong F, Li L, Du Y, Zhu H, Li Z and Kong X: Exosomal adrenomedullin derived from cancer-associated fibroblasts promotes lipolysis in adipose tissue. Gut. 67:2226–2227. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hu W, Ru Z, Zhou Y, Xiao W, Sun R, Zhang S, Gao Y, Li X, Zhang X and Yang H: Lung cancer-derived extracellular vesicles induced myotube atrophy and adipocyte lipolysis via the extracellular IL-6-mediated STAT3 pathway. Biochim Biophys Acta Mol Cell Biol Lipids. 1864:1091–1102. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Zhu L, Bai M, Liu Y, Zhan Y, Deng T, Yang H, Sun W, Wang X, Zhu K, et al: Exosomal circRNA derived from gastric tumor promotes white adipose browning by targeting the miR-133/PRDM16 pathway. Int J Cancer. 144:2501–2515. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bhome R, Goh RW, Bullock MD, Pillar N, Thirdborough SM, Mellone M, Mirnezami R, Galea D, Veselkov K, Gu Q, et al: Exosomal microRNAs derived from colorectal cancer-associated fibroblasts: Role in driving cancer progression. Aging (Albany NY). 9:2666–2694. 2017. View Article : Google Scholar : PubMed/NCBI | |
Au Yeung CL, Co NN, Tsuruga T, Yeung TL, Kwan SY, Leung CS, Li Y, Lu ES, Kwan K, Wong KK, et al: Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1. Nat Commun. 7:111502016. View Article : Google Scholar : PubMed/NCBI | |
Zheng Z, Liu L, Zhan Y, Yu S and Kang T: Adipose-derived stem cell-derived microvesicle-released miR-210 promoted proliferation, migration and invasion of endothelial cells by regulating RUNX3. Cell Cycle. 17:1026–1033. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lazar I, Clement E, Dauvillier S, Milhas D, Ducoux-Petit M, LeGonidec S, Moro C, Soldan V, Dalle S, Balor S, et al: Adipocyte exosomes promote melanoma aggressiveness through fatty acid oxidation: A novel mechanism linking obesity and cancer. Cancer Res. 76:4051–4057. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Wu Y, Guo J, Fei X, Yu L and Ma S: Adipocyte-derived exosomes promote lung cancer metastasis by increasing MMP9 activity via transferring MMP3 to lung cancer cells. Oncotarget. 8:81880–81891. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zaidi N, Lupien L, Kuemmerle NB, Kinlaw WB, Swinnen JV and Smans K: Lipogenesis and lipolysis: The pathways exploited by the cancer cells to acquire fatty acids. Prog Lipid Res. 52:585–589. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kedia-Mehta N and Finlay DK: Competition for nutrients and its role in controlling immune responses. Nat Commun. 10:21232019. View Article : Google Scholar : PubMed/NCBI | |
Gonzalez-Perez RR, Xu Y, Guo S, Watters A, Zhou W and Leibovich SJ: Leptin upregulates VEGF in breast cancer via canonic and non-canonical signalling pathways and NFkappaB/HIF-1alpha activation. Cell Signal. 22:1350–1362. 2010. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Lee JS, Jie C, Park MH, Iwakura Y, Patel Y, Soni M, Reisman D and Chen H: HER2 overexpression triggers an IL1α proinflammatory circuit to drive tumorigenesis and promote chemotherapy resistance. Cancer Res. 78:2040–2051. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Liu J, Wu N, Zhang H, Zhang S, Li L and Wang M: ANGPTL4 overexpression is associated with progression and poor prognosis in breast cancer. Oncol Lett. 20:2499–2505. 2020. View Article : Google Scholar : PubMed/NCBI | |
Meng L, Zhou J, Sasano H, Suzuki T, Zeitoun KM and Bulun SE: Tumor necrosis factor alpha and interleukin 11 secreted by malignant breast epithelial cells inhibit adipocyte differentiation by selectively down-regulating CCAAT/enhancer binding protein alpha and peroxisome proliferator-activated receptor gamma: Mechanism of desmoplastic reaction. Cancer Res. 61:2250–2255. 2001.PubMed/NCBI | |
Gray NE, Lam LN, Yang K, Zhou AY, Koliwad S and Wang JC: Angiopoietin-like 4 (Angptl4) protein is a physiological mediator of intracellular lipolysis in murine adipocytes. J Biol Chem. 287:8444–8456. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kogo R, Shimamura T, Mimori K, Kawahara K, Imoto S, Sudo T, Tanaka F, Shibata K, Suzuki A, Komune S, et al: Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res. 71:6320–6326. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, et al: Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 464:1071–1076. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ma X, Li Z, Li T, Zhu L, Li Z and Tian N: Long non-coding RNA HOTAIR enhances angiogenesis by induction of VEGFA expression in glioma cells and transmission to endothelial cells via glioma cell derived-extracellular vesicles. Am J Transl Res. 9:5012–5021. 2017.PubMed/NCBI | |
Sanchez-Alvarez R, Martinez-Outschoorn UE, Lamb R, Hulit J, Howell A, Gandara R, Sartini M, Rubin E, Lisanti MP and Sotgia F: Mitochondrial dysfunction in breast cancer cells prevents tumor growth: Understanding chemoprevention with metformin. Cell Cycle. 12:172–182. 2013. View Article : Google Scholar : PubMed/NCBI | |
Munteanu R, Onaciu A, Moldovan C, Zimta AA, Gulei D, Paradiso AV, Lazar V and Berindan-Neagoe I: Adipocyte-based cell therapy in oncology: The role of cancer-associated adipocytes and their reinterpretation as delivery platforms. Pharmaceutics. 12:4022020. View Article : Google Scholar : PubMed/NCBI |