Effects of miRNAs, lncRNAs and circRNAs on osteoporosis as regulatory factors of bone homeostasis (Review)
- Authors:
- Zhichao Li
- Haipeng Xue
- Guoqing Tan
- Zhanwang Xu
-
Affiliations: First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, P.R. China, Department of Orthopaedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, P.R. China - Published online on: September 9, 2021 https://doi.org/10.3892/mmr.2021.12428
- Article Number: 788
-
Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Li X, Xu J, Dai B, Wang X, Guo Q and Qin L: Targeting autophagy in osteoporosis: From pathophysiology to potential therapy. Ageing Res Rev. 62:1010982020. View Article : Google Scholar : PubMed/NCBI | |
de Paula FJA and Rosen CJ: Marrow adipocytes: Origin, structure, and function. Annu Rev Physiol. 82:461–484. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hernlund E, Svedbom A, Ivergård M, Compston J, Cooper C, Stenmark J, McCloskey EV, Jönsson B and Kanis JA: Osteoporosis in the European Union: Medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos. 8:1362013. View Article : Google Scholar : PubMed/NCBI | |
Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A and Tosteson A: Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res. 22:465–475. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wan Y: PPARγ in bone homeostasis. Trends Endocrinol Metab. 21:722–728. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhao W, Shen G, Ren H, Liang D, Yu X, Zhang Z, Huang J, Qiu T, Tang J, Shang Q, et al: Therapeutic potential of microRNAs in osteoporosis function by regulating the biology of cells related to bone homeostasis. J Cell Physiol. 233:9191–9208. 2018. View Article : Google Scholar : PubMed/NCBI | |
Infante A and Rodríguez CI: Osteogenesis and aging: Lessons from mesenchymal stem cells. Stem Cell Res Ther. 9:2442018. View Article : Google Scholar : PubMed/NCBI | |
Feng Q, Zheng S and Zheng J: The emerging role of microRNAs in bone remodeling and its therapeutic implications for osteoporosis. Biosci Rep. 38:BSR201804532018. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Yujiao W, Fang W, Linhui Y, Ziqi G, Zhichen W, Zirui W and Shengwang W: The roles of miRNA, lncRNA and circRNA in the development of osteoporosis. Biol Res. 53:402020. View Article : Google Scholar : PubMed/NCBI | |
Jin D, Wu X, Yu H, Jiang L, Zhou P, Yao X, Meng J, Wang L, Zhang M and Zhang Y: Systematic analysis of lncRNAs, mRNAs, circRNAs and miRNAs in patients with postmenopausal osteoporosis. Am J Transl Res. 10:1498–1510. 2018.PubMed/NCBI | |
Eskildsen T, Taipaleenmäki H, Stenvang J, Abdallah BM, Ditzel N, Nossent AY, Bak M, Kauppinen S and Kassem M: MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo. Proc Natl Acad Sci USA. 108:6139–6144. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chen S, Li Y, Zhi S, Ding Z, Huang Y, Wang W, Zheng R, Yu H, Wang J, Hu M, et al: lncRNA Xist regulates osteoblast differentiation by sponging miR-19a-3p in aging-induced osteoporosis. Aging Dis. 11:1058–1068. 2020. View Article : Google Scholar : PubMed/NCBI | |
Meng YC, Lin T, Jiang H, Zhang Z, Shu L, Yin J, Ma X, Wang C, Gao R and Zhou XH: miR-122 exerts inhibitory effects on osteoblast proliferation/differentiation in osteoporosis by activating the PCP4-mediated JNK pathway. Mol Ther Nucleic Acids. 20:345–358. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li J, Ayoub A, Xiu Y, Yin X, Sanders JO, Mesfin A, Xing L, Yao Z and Boyce BF: TGFβ-induced degradation of TRAF3 in mesenchymal progenitor cells causes age-related osteoporosis. Nat Commun. 10:27952019. View Article : Google Scholar : PubMed/NCBI | |
Tang QQ and Lane MD: Adipogenesis: From stem cell to adipocyte. Annu Rev Biochem. 81:715–736. 2012. View Article : Google Scholar : PubMed/NCBI | |
Trohatou O, Zagoura D, Orfanos NK, Pappa KI, Marinos E, Anagnou NP and Roubelakis MG: miR-26a mediates adipogenesis of amniotic fluid mesenchymal stem/stromal cells via PTEN, Cyclin E1, and CDK6. Stem Cells Dev. 26:482–494. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xu R, Shen X, Si Y, Fu Y, Zhu W, Xiao T, Fu Z, Zhang P, Cheng J and Jiang H: MicroRNA-31a-5p from aging BMSCs links bone formation and resorption in the aged bone marrow microenvironment. Aging Cell. 17:e127942018. View Article : Google Scholar : PubMed/NCBI | |
Moura SR, Bras JP, Freitas J, Osório H, Barbosa MA, Santos SG and Almeida MI: miR-99a in bone homeostasis: Regulating osteogenic lineage commitment and osteoclast differentiation. Bone. 134:1153032020. View Article : Google Scholar : PubMed/NCBI | |
Zhou JG, Hua Y, Liu SW, Hu WQ, Qian R and Xiong L: MicroRNA-1286 inhibits osteogenic differentiation of mesenchymal stem cells to promote the progression of osteoporosis via regulating FZD4 expression. Eur Rev Med Pharmacol Sci. 24:1–10. 2020.PubMed/NCBI | |
Hao L, Fu J, Tian Y and Wu J: Systematic analysis of lncRNAs, miRNAs and mRNAs for the identification of biomarkers for osteoporosis in the mandible of ovariectomized mice. Int J Mol Med. 40:689–702. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gao Y, Cao Y, Cui X, Wang X, Zhou Y, Huang F, Wang X, Wen J, Xie K, Xu P, et al: miR-199a-3p regulates brown adipocyte differentiation through mTOR signaling pathway. Mol Cell Endocrinol. 476:155–164. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen HP, Wen J, Tan SR, Kang LM and Zhu GC: miR-199a-3p inhibition facilitates cardiomyocyte differentiation of embryonic stem cell through promotion of MEF2C. J Cell Physiol. 234:23315–23325. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wu JC, Sun J, Xu JC, Zhou ZY and Zhang YF: Down-regulated microRNA-199a-3p enhances osteogenic differentiation of bone marrow mesenchymal stem cells by targeting Kdm3a in ovariectomized rats. Biochem J. 478:721–734. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jiang K, Teng GD and Chen YQ: MicroRNA-23 suppresses osteogenic differentiation of human bone marrow mesenchymal stem cells by targeting the MEF2C-mediated MAPK signaling pathway. J Gene Med. 22:e32162020. View Article : Google Scholar : PubMed/NCBI | |
Yin C, Tian Y, Yu Y, Yang C, Su P, Zhao Y, Wang X, Zhang K, Pei J, Li D, et al: miR-129-5p inhibits bone formation through TCF4. Front Cell Dev Biol. 8:6006412020. View Article : Google Scholar : PubMed/NCBI | |
Alajez NM, Lenarduzzi M, Ito E, Hui AB, Shi W, Bruce J, Yue S, Huang SH, Xu W, Waldron J, et al: miR-218 suppresses nasopharyngeal cancer progression through downregulation of survivin and the SLIT2-ROBO1 pathway. Cancer Res. 71:2381–2391. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liu T, Zhang X, Du L, Wang Y, Liu X, Tian H, Wang L, Li P, Zhao Y, Duan W, et al: Exosome-transmitted miR-128-3p increase chemosensitivity of oxaliplatin-resistant colorectal cancer. Mol Cancer. 18:432019. View Article : Google Scholar : PubMed/NCBI | |
Kou J, Zheng X, Guo J, Liu Y and Liu X: MicroRNA-218-5p relieves postmenopausal osteoporosis through promoting the osteoblast differentiation of bone marrow mesenchymal stem cells. J Cell Biochem. 121:1216–1226. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Liu Y, Wu M, Wang H, Wu L, Xu B, Zhou W, Fan X, Shao J and Yang T: MicroRNA-664a-5p promotes osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by directly downregulating HMGA2. Biochem Biophys Res Commun. 521:9–14. 2020. View Article : Google Scholar : PubMed/NCBI | |
Qi XB, Jia B, Wang W, Xu GH, Guo JC, Li X and Liu JN: Role of miR-199a-5p in osteoblast differentiation by targeting TET2. Gene. 726:1441932020. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Yuan SZ, Sun H, Sun L, Zhou D and Yan J: miR-199b-5p promoted chondrogenic differentiation of C3H10T1/2 cells by regulating JAG1. J Tissue Eng Regen Med. 14:1618–1629. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Wang Y, Xiang S, Zheng Z, Bian Y, Feng B and Weng X: Chondrocytes-derived exosomal miR-8485 regulated the Wnt/β-catenin pathways to promote chondrogenic differentiation of BMSCs. Biochem Biophys Res Commun. 523:506–513. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shen PF, Wang B, Qu YX, Zheng C, Xu JD, Xie ZK and Ma Y: MicroRNA-23c inhibits articular cartilage damage recovery by regulating MSCs differentiation to chondrocytes via reducing FGF2. Eur Rev Med Pharmacol Sci. 23:941–948. 2019.PubMed/NCBI | |
Xu S and Wu X: miR-134 inhibits chondrogenic differentiation of bone marrow mesenchymal stem cells by targetting SMAD6. Biosci Rep. 39:BSR201809212019. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Yang F, Gao M, Gong R, Jin M, Liu T, Sun Y, Fu Y, Huang Q, Zhang W, et al: miR-149-3p regulates the switch between adipogenic and osteogenic differentiation of BMSCs by targeting FTO. Mol Ther Nucleic Acids. 17:590–600. 2019. View Article : Google Scholar : PubMed/NCBI | |
Calvier L, Chouvarine P, Legchenko E, Hoffmann N, Geldner J, Borchert P, Jonigk D, Mozes MM and Hansmann G: PPARγ Links BMP2 and TGFβ1 pathways in vascular smooth muscle cells, regulating cell proliferation and glucose metabolism. Cell Metab. 25:1118–1134.e7. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li D, Zhang F, Zhang X, Xue C, Namwanje M, Fan L, Reilly MP, Hu F and Qiang L: Distinct functions of PPARγ isoforms in regulating adipocyte plasticity. Biochem Biophys Res Commun. 481:132–138. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lin Z, He H, Wang M and Liang J: MicroRNA-130a controls bone marrow mesenchymal stem cell differentiation towards the osteoblastic and adipogenic fate. Cell Prolif. 52:e126882019. View Article : Google Scholar : PubMed/NCBI | |
Jamali L, Tofigh R, Tutunchi S, Panahi G, Borhani F, Akhavan S, Nourmohammadi P, Ghaderian SMH, Rasouli M and Mirzaei H: Circulating microRNAs as diagnostic and therapeutic biomarkers in gastric and esophageal cancers. J Cell Physiol. 233:8538–8550. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang T, Zhong D, Qin Z, He S, Gong Y, Li W and Li X: miR-100-3p inhibits the adipogenic differentiation of hMSCs by targeting PIK3R1 via the PI3K/AKT signaling pathway. Aging (Albany NY). 12:25090–25100. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhu E, Zhang J, Zhou J, Yuan H, Zhao W and Wang B: miR-20a-5p promotes adipogenic differentiation of murine bone marrow stromal cells via targeting Kruppel-like factor 3. J Mol Endocrinol. 60:225–237. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cui P, Zhao X, Liu J, Chen X, Gao Y, Tao K, Wang C and Zhang X: miR-146a interacting with lncRNA EPB41L4A-AS1 and lncRNA SNHG7 inhibits proliferation of bone marrow-derived mesenchymal stem cells. J Cell Physiol. 235:3292–3308. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kong R, Gao J, Ji L and Zhao D: MicroRNA-126 promotes proliferation, migration, invasion and endothelial differentiation while inhibits apoptosis and osteogenic differentiation of bone marrow-derived mesenchymal stem cells. Cell Cycle. 19:2119–2138. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tang L, Lu W, Huang J, Tang X, Zhang H and Liu S: miR-144 promotes the proliferation and differentiation of bone mesenchymal stem cells by downregulating the expression of SFRP1. Mol Med Rep. 20:270–280. 2019.PubMed/NCBI | |
Yang BC, Kuang MJ, Kang JY, Zhao J, Ma JX and Ma XL: Human umbilical cord mesenchymal stem cell-derived exosomes act via the miR-1263/Mob1/Hippo signaling pathway to prevent apoptosis in disuse osteoporosis. Biochem Biophys Res Commun. 524:883–889. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hernandez SL, Nelson M, Sampedro GR, Bagrodia N, Defnet AM, Lec B, Emolo J, Kirschner R, Wu L, Biermann H, et al: Staphylococcus aureus alpha toxin activates Notch in vascular cells. Angiogenesis. 22:197–209. 2019. View Article : Google Scholar : PubMed/NCBI | |
Man S, Sanchez Duffhues G, Ten Dijke P and Baker D: The therapeutic potential of targeting the endothelial-to-mesenchymal transition. Angiogenesis. 22:3–13. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fan L, Wang J and Ma C: miR125a attenuates BMSCs apoptosis via the MAPK-ERK pathways in the setting of craniofacial defect reconstruction. J Cell Physiol. 235:2857–2865. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Li T, Zhu F, Deng SN, Li X and He Y: Regulatory roles of miR-22/Redd1-mediated mitochondrial ROS and cellular autophagy in ionizing radiation-induced BMSC injury. Cell Death Dis. 10:2272019. View Article : Google Scholar : PubMed/NCBI | |
Yao RW, Wang Y and Chen LL: Cellular functions of long noncoding RNAs. Nat Cell Biol. 21:542–551. 2019. View Article : Google Scholar : PubMed/NCBI | |
St Laurent G, Wahlestedt C and Kapranov P: The landscape of long noncoding RNA classification. Trends Genet. 31:239–251. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen LL: Linking long noncoding RNA localization and function. Trends Biochem Sci. 41:761–772. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Xie H and Li S: lncRNA LOXL1-AS1 controls osteogenic and adipocytic differentiation of bone marrow mesenchymal stem cells in postmenopausal osteoporosis through regulating the miR-196a-5p/Hmga2 axis. J Bone Miner Metab. 38:794–805. 2020. View Article : Google Scholar : PubMed/NCBI | |
Che M, Gong W, Zhao Y and Liu M: Long noncoding RNA HCG18 inhibits the differentiation of human bone marrow-derived mesenchymal stem cells in osteoporosis by targeting miR-30a-5p/NOTCH1 axis. Mol Med. 26:1062020. View Article : Google Scholar : PubMed/NCBI | |
Li M, Xie Z, Li J, Lin J, Zheng G, Liu W, Tang S, Cen S, Ye G, Li Z, et al: GAS5 protects against osteoporosis by targeting UPF1/SMAD7 axis in osteoblast differentiation. Elife. 9:e590792020. View Article : Google Scholar : PubMed/NCBI | |
Zheng J, Guo H, Qin Y, Liu Z, Ding Z, Zhang L and Wang W: SNHG5/miR-582-5p/RUNX3 feedback loop regulates osteogenic differentiation and apoptosis of bone marrow mesenchymal stem cells. J Cell Physiol. Oct 28–2020.(Epub ahead of print). doi:10.1002/jcp.29527. View Article : Google Scholar | |
Jin C, Jia L, Tang Z and Zheng Y: Long non-coding RNA MIR22HG promotes osteogenic differentiation of bone marrow mesenchymal stem cells via PTEN/AKT pathway. Cell Death Dis. 11:6012020. View Article : Google Scholar : PubMed/NCBI | |
Huang MJ, Zhao JY, Xu JJ, Li J, Zhuang YF and Zhang XL: lncRNA ADAMTS9-AS2 controls human mesenchymal stem cell chondrogenic differentiation and functions as a ceRNA. Mol Ther Nucleic Acids. 18:533–545. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu D, Wu K, Yang Y, Zhu D, Zhang C and Zhao S: Long noncoding RNA ADAMTS9-AS2 suppresses the progression of esophageal cancer by mediating CDH3 promoter methylation. Mol Carcinog. 59:32–44. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shu T, He L, Wang X, Pang M, Yang B, Feng F, Wu Z, Liu C, Zhang S, Liu B, et al: Long noncoding RNA UCA1 promotes chondrogenic differentiation of human bone marrow mesenchymal stem cells via miRNA-145-5p/SMAD5 and miRNA-124-3p/SMAD4 axis. Biochem Biophys Res Commun. 514:316–322. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang RF, Liu JW, Yu SP, Sun D, Wang XH, Fu JS and Xie Z: lncRNA UCA1 affects osteoblast proliferation and differentiation by regulating BMP-2 expression. Eur Rev Med Pharmacol Sci. 23:6774–6782. 2019.PubMed/NCBI | |
Pan Y, Xie Z, Cen S, Li M, Liu W, Tang S, Ye G, Li J, Zheng G, Li Z, et al: Long noncoding RNA repressor of adipogenesis negatively regulates the adipogenic differentiation of mesenchymal stem cells through the hnRNP A1-PTX3-ERK axis. Clin Transl Med. 10:e2272020. View Article : Google Scholar : PubMed/NCBI | |
Zhu E, Zhang J, Li Y, Yuan H, Zhou J and Wang B: Long noncoding RNA Plnc1 controls adipocyte differentiation by regulating peroxisome proliferator-activated receptor γ. FASEB J. 33:2396–2408. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fu D, Yang S, Lu J, Lian H and Qin K: lncRNA NORAD promotes bone marrow stem cell differentiation and proliferation by targeting miR-26a-5p in steroid-induced osteonecrosis of the femoral head. Stem Cell Res Ther. 12:182021. View Article : Google Scholar : PubMed/NCBI | |
Soghli N, Yousefi T, Abolghasemi M and Qujeq D: NORAD, a critical long non-coding RNA in human cancers. Life Sci. 264:1186652021. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Chen Y, Hu X, Zhang N and Wang F: lncRNA LINC01535 upregulates BMP2 expression levels to promote osteogenic differentiation via sponging miR-3619-5p. Mol Med Rep. 22:5428–5435. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gan X, Liu S and Liang K: MicroRNA-19b-3p promotes cell proliferation and osteogenic differentiation of BMSCs by interacting with lncRNA H19. BMC Med Genet. 21:112020. View Article : Google Scholar : PubMed/NCBI | |
Song G, Zhou J, Song R, Liu D, Yu W, Xie W, Ma Z, Gong J, Meng H, Yang T and Song Z: Long noncoding RNA H19 regulates the therapeutic efficacy of mesenchymal stem cells in rats with severe acute pancreatitis by sponging miR-138-5p and miR-141-3p. Stem Cell Res Ther. 11:4202020. View Article : Google Scholar : PubMed/NCBI | |
Li M, Cong R, Yang L, Yang L, Zhang Y and Fu Q: A novel lncRNA LNC_000052 leads to the dysfunction of osteoporotic BMSCs via the miR-96-5p-PIK3R1 axis. Cell Death Dis. 11:7952020. View Article : Google Scholar : PubMed/NCBI | |
Gao B, Li S and Li G: Long noncoding RNA (lncRNA) small nucleolar RNA Host Gene 5 (SNHG5) regulates proliferation, differentiation, and apoptosis of K562 cells in chronic Myeliod Leukemia. Med Sci Monit. 25:6812–6819. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Liu H, Hou L, Wang G, Zhang R, Huang Y, Chen X and Zhu J: Circular RNA_LARP4 inhibits cell proliferation and invasion of gastric cancer by sponging miR-424-5p and regulating LATS1 expression. Mol Cancer. 16:1512017. View Article : Google Scholar : PubMed/NCBI | |
Wang R, Zhang S, Chen X, Li N, Li J, Jia R, Pan Y and Liang H: CircNT5E acts as a sponge of miR-422a to promote glioblastoma tumorigenesis. Cancer Res. 78:4812–4825. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang XB, Li PB, Guo SF, Yang QS, Chen ZX, Wang D and Shi SB: circRNA_0006393 promotes osteogenesis in glucocorticoid-induced osteoporosis by sponging miR-145-5p and upregulating FOXO1. Mol Med Rep. 20:2851–2858. 2019.PubMed/NCBI | |
Yu L and Liu Y: circRNA_0016624 could sponge miR-98 to regulate BMP2 expression in postmenopausal osteoporosis. Biochem Biophys Res Commun. 516:546–550. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wen J, Guan Z, Yu B, Guo J, Shi Y and Hu L: Circular RNA hsa_circ_0076906 competes with OGN for miR-1305 biding site to alleviate the progression of osteoporosis. Int J Biochem Cell Biol. 122:1057192020. View Article : Google Scholar : PubMed/NCBI | |
Shen W, Sun B, Zhou C, Ming W, Zhang S and Wu X: CircFOXP1/FOXP1 promotes osteogenic differentiation in adipose-derived mesenchymal stem cells and bone regeneration in osteoporosis via miR-33a-5p. J Cell Mol Med. 24:12513–12524. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cherubini A, Barilani M, Rossi RL, Jalal MMK, Rusconi F, Buono G, Ragni E, Cantarella G, Simpson HARW, Péault B and Lazzari L: FOXP1 circular RNA sustains mesenchymal stem cell identity via microRNA inhibition. Nucleic Acids Res. 47:5325–5340. 2019. View Article : Google Scholar : PubMed/NCBI | |
Luo Y, Liu F, Ma J, Fu Y and Gui R: A novel epigenetic regulation of circFoxp1 on Foxp1 in colon cancer cells. Cell Death Dis. 11:7822020. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Wang C, Bai J, Li X, Yuan J, Shi Z and Mao N: Involvement of circRNA_0007059 in the regulation of postmenopausal osteoporosis by promoting the microRNA-378/BMP-2 axis. Cell Biol Int. 45:447–455. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gao S, Yu Y, Liu L, Meng J and Li G: Circular RNA hsa_circ_0007059 restrains proliferation and epithelial-mesenchymal transition in lung cancer cells via inhibiting microRNA-378. Life Sci. 233:1166922019. View Article : Google Scholar : PubMed/NCBI | |
Huang Y, Xiao D, Huang S, Zhuang J, Zheng X, Chang Y and Yin D: Circular RNA YAP1 attenuates osteoporosis through up-regulation of YAP1 and activation of Wnt/β-catenin pathway. Biomed Pharmacother. 129:1103652020. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Jia L and Zheng Y: circRNA expression profiles in human bone marrow stem cells undergoing osteoblast differentiation. Stem Cell Rev Rep. 15:126–138. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chia W, Liu J, Huang YG and Zhang C: A circular RNA derived from DAB1 promotes cell proliferation and osteogenic differentiation of BMSCs via RBPJ/DAB1 axis. Cell Death Dis. 11:3722020. View Article : Google Scholar : PubMed/NCBI | |
Chen G, Wang Q, Li Z, Yang Q, Liu Y, Du Z, Zhang G and Song Y: Circular RNA CDR1as promotes adipogenic and suppresses osteogenic differentiation of BMSCs in steroid-induced osteonecrosis of the femoral head. Bone. 133:1152582020. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Jia S, Wei Q, Zhuang Z, Li J, Fan Y, Zhang L, Hong Z, Ma X, Sun R, et al: circRNA_25487 inhibits bone repair in trauma-induced osteonecrosis of femoral head by sponging miR-134-3p through p21. Regen Ther. 16:23–31. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kim KH and Lee MS: Autophagy-a key player in cellular and body metabolism. Nat Rev Endocrinol. 10:322–337. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu F, Zhang J, Qin L, Yang Z, Xiong J, Zhang Y, Li R, Li S, Wang H, Yu B, et al: Circular RNA EIF6 (Hsa_circ_0060060) sponges miR-144-3p to promote the cisplatin-resistance of human thyroid carcinoma cells by autophagy regulation. Aging (Albany NY). 10:3806–3820. 2018. View Article : Google Scholar : PubMed/NCBI | |
Garcia J and Delany AM: MicroRNAs regulating TGFβ and BMP signaling in the osteoblast lineage. Bone. 143:1157912021. View Article : Google Scholar : PubMed/NCBI | |
Chen Y and Yang C: miR-197-3p-induced downregulation of lysine 63 deubiquitinase promotes cell proliferation and inhibits cell apoptosis in lung adenocarcinoma cell lines. Mol Med Rep. 17:3921–3927. 2018.PubMed/NCBI | |
You M, Zhang L, Zhang X, Fu Y and Dong X: MicroRNA-197-3p inhibits the osteogenic differentiation in osteoporosis by down-regulating KLF 10. Clin Interv Aging. 16:107–117. 2021. View Article : Google Scholar : PubMed/NCBI | |
Seeliger C, Karpinski K, Haug AT, Vester H, Schmitt A, Bauer JS and van Griensven M: Five freely circulating miRNAs and bone tissue miRNAs are associated with osteoporotic fractures. J Bone Miner Res. 29:1718–1728. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gong B, Wang X, Li B and Li Y, Lu R, Zhang K, Li B, Ma Y and Li Y: miR-205-5p inhibits thymic epithelial cell proliferation via FA2H-TFAP2A feedback regulation in age-associated thymus involution. Mol Immunol. 122:173–185. 2020. View Article : Google Scholar : PubMed/NCBI | |
Oltra M, Vidal-Gil L, Maisto R, Sancho-Pelluz J and Barcia JM: Oxidative stress-induced angiogenesis is mediated by miR-205-5p. J Cell Mol Med. 24:1428–1436. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhu H, Shan Y, Ge K, Lu J, Kong W and Jia C: lncRNA CYTOR promotes pancreatic cancer cell proliferation and migration by sponging miR-205-5p. Pancreatology. 20:1139–1148. 2020. View Article : Google Scholar : PubMed/NCBI | |
Huang M, Li X, Zhou C, Si M, Zheng H, Chen L and Ding H: Noncoding RNA miR-205-5p mediates osteoporosis pathogenesis and osteoblast differentiation by regulating RUNX2. J Cell Biochem. 121:4196–4203. 2020. View Article : Google Scholar : PubMed/NCBI | |
Baglio SR, Rooijers K, Koppers-Lalic D, Verweij FJ, Pérez Lanzón M, Zini N, Naaijkens B, Perut F, Niessen HW, Baldini N and Pegtel DM: Human bone marrow- and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species. Stem Cell Res Ther. 6:1272015. View Article : Google Scholar : PubMed/NCBI | |
Sundar IK, Li D and Rahman I: Small RNA-sequence analysis of plasma-derived extracellular vesicle miRNAs in smokers and patients with chronic obstructive pulmonary disease as circulating biomarkers. J Extracell Vesicles. 8:16848162019. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Wang Y, Zhao H, Han X, Zhao T, Qu P, Li G and Wang W: Extracellular vesicle-encapsulated miR-22-3p from bone marrow mesenchymal stem cell promotes osteogenic differentiation via FTO inhibition. Stem Cell Res Ther. 11:2272020. View Article : Google Scholar : PubMed/NCBI | |
Wang N, Zhou Z, Wu T, Liu W, Yin P, Pan C and Yu X: TNF-α-induced NF-κB activation upregulates microRNA-150-3p and inhibits osteogenesis of mesenchymal stem cells by targeting β-catenin. Open Biol. 6:1502582016. View Article : Google Scholar : PubMed/NCBI | |
Qiu M, Zhai S, Fu Q and Liu D: Bone marrow mesenchymal stem cells-derived exosomal MicroRNA-150-3p promotes osteoblast proliferation and differentiation in osteoporosis. Hum Gene Ther. 32:717–729. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ma J, Lin X, Chen C, Li S, Zhang S, Chen Z, Li D, Zhao F, Yang C, Yin C, et al: Circulating miR-181c-5p and miR-497-5p are potential biomarkers for prognosis and diagnosis of osteoporosis. J Clin Endocrinol Metab. 105:dgz3002020. View Article : Google Scholar : PubMed/NCBI | |
Shen L, Li J, Xu L, Ma J, Li H, Xiao X, Zhao J and Fang L: miR-497 induces apoptosis of breast cancer cells by targeting Bcl-w. Exp Ther Med. 3:475–480. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gu Z, Xie D, Huang C, Ding R, Zhang R, Li Q, Lin C and Qiu Y: MicroRNA-497 elevation or LRG1 knockdown promotes osteoblast proliferation and collagen synthesis in osteoporosis via TGF-beta1/Smads signalling pathway. J Cell Mol Med. 24:12619–12632. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mohamad N, Nabih ES, Zakaria ZM, Nagaty MM and Metwaly RG: Insight into the possible role of miR-214 in primary osteoporosis via osterix. J Cell Biochem. 120:15518–15526. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lu XZ, Yang ZH, Zhang HJ, Zhu LL, Mao XL and Yuan Y: miR-214 protects MC3T3-E1 osteoblasts against H2O2-induced apoptosis by suppressing oxidative stress and targeting ATF4. Eur Rev Med Pharmacol Sci. 21:4762–4770. 2017.PubMed/NCBI | |
Yang C, Gu Z, Ding R, Huang C, Li Q, Xie D, Zhang R and Qiu Y: Long non-coding RNA MEG3 silencing and microRNA-214 restoration elevate osteoprotegerin expression to ameliorate osteoporosis by limiting TXNIP. J Cell Mol Med. 25:2025–2039. 2021. View Article : Google Scholar : PubMed/NCBI | |
Vimalraj S, Saravanan S, Vairamani M, Gopalakrishnan C, Sastry TP and Selvamurugan N: A Combinatorial effect of carboxymethyl cellulose based scaffold and microRNA-15b on osteoblast differentiation. Int J Biol Macromol. 93:1457–1464. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lu X, Zhang Y, Zheng Y and Chen B: The miRNA-15b/USP7/KDM6B axis engages in the initiation of osteoporosis by modulating osteoblast differentiation and autophagy. J Cell Mol Med. 25:2069–2081. 2021. View Article : Google Scholar : PubMed/NCBI | |
Naseri Z, Oskuee RK, Jaafari MR and Forouzandeh Moghadam M: Exosome-mediated delivery of functionally active miRNA-142-3p inhibitor reduces tumorigenicity of breast cancer in vitro and in vivo. Int J Nanomedicine. 13:7727–7747. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lou Z, Peng Z, Wang B, Li X, Li X and Zhang X: miR-142-5p promotes the osteoclast differentiation of bone marrow-derived macrophages via PTEN/PI3K/AKT/FoxO1 pathway. J Bone Miner Metab. 37:815–824. 2019. View Article : Google Scholar : PubMed/NCBI | |
Luo B, Yang J, Yuan Y, Hao P and Cheng X: MicroRNA-142 regulates osteoblast differentiation and apoptosis of mouse pre-osteoblast cells by targeting bone morphogenetic protein 2. FEBS Open Bio. 10:1793–1801. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hu WX, Li H and Jiang JZ: miR-491-3p is down-regulated in postmenopausal osteoporosis and affects growth, differentiation and apoptosis of hFOB1.19 cells through targeting CTSS. Folia Histochem Cytobiol. 58:9–16. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Cui SY, Yi H, Zhu XH, Liu W and Xu YJ: miR-708 inhibits MC3T3-E1 cells against HO-induced apoptosis through targeting PTEN. J Orthop Surg Res. 15:2552020. View Article : Google Scholar : PubMed/NCBI | |
Yin C, Tian Y, Yu Y, Li D, Miao Z, Su P, Zhao Y, Wang X, Pei J, Zhang K and Qian A: Long noncoding RNA AK039312 and AK079370 inhibits bone formation via miR-199b-5p. Pharmacol Res. 163:1052302021. View Article : Google Scholar : PubMed/NCBI | |
Tong X, Gu PC, Xu SZ and Lin XJ: Long non-coding RNA-DANCR in human circulating monocytes: A potential biomarker associated with postmenopausal osteoporosis. Biosci Biotechnol Biochem. 79:732–737. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang CG, Hu YH, Su SL and Zhong D: lncRNA DANCR and miR-320a suppressed osteogenic differentiation in osteoporosis by directly inhibiting the Wnt/β-catenin signaling pathway. Exp Mol Med. 52:1310–1325. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Li Y and Zhang Y, Ma L, Lin L, Meng J, Jiang L, Wang L, Zhou P and Zhang Y: lncRNA MEG3 inhibited osteogenic differentiation of bone marrow mesenchymal stem cells from postmenopausal osteoporosis by targeting miR-133a-3p. Biomed Pharmacother. 89:1178–1186. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hu F, Jiang C, Bu G, Fu Y and Yu Y: Silencing long noncoding RNA colon cancer-associated transcript-1 upregulates microRNA-34a-5p to promote proliferation and differentiation of osteoblasts in osteoporosis. Cancer Gene Ther. Jan 5–2021.(Epub ahead of print). doi: https://doi.org/10.1038/s41417-020-00264-7. View Article : Google Scholar | |
Mulati M, Kobayashi Y, Takahashi A, Numata H, Saito M, Hiraoka Y, Ochi H, Sato S, Ezura Y, Yuasa M, et al: The long noncoding RNA Crnde regulates osteoblast proliferation through the Wnt/β-catenin signaling pathway in mice. Bone. 130:1150762020. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Wang YW, Chen WD, Dong HH and Xu YJ: Iron accumulation regulates osteoblast apoptosis through lncRNA XIST/miR-758-3p/caspase 3 axis leading to osteoporosis. IUBMB Life. 73:432–443. 2021. View Article : Google Scholar : PubMed/NCBI | |
Niu S, Xiang F and Jia H: Downregulation of lncRNA XIST promotes proliferation and differentiation, limits apoptosis of osteoblasts through regulating miR-203-3p/ZFPM2 axis. Connect Tissue Res. 62:381–392. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mi B, Xiong Y, Chen L, Yan C, Endo Y, Liu Y, Liu J, Hu L, Hu Y, Sun Y, et al: circRNA AFF4 promotes osteoblast cells proliferation and inhibits apoptosis via the Mir-7223-5p/PIK3R1 axis. Aging (Albany NY). 11:11988–12001. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhai Q, Zhao Y, Wang L, Dai Y, Zhao P, Xiang X, Liu K, Du W, Tian W, Yang B, et al: circRNA hsa_circ_0008500 Acts as a miR-1301-3p sponge to promote osteoblast mineralization by upregulating PADI4. Front Cell Dev Biol. 8:6027312020. View Article : Google Scholar : PubMed/NCBI | |
Ji F, Zhu L, Pan J, Shen Z, Yang Z, Wang J, Bai X, Lin Y and Tao J: hsa_circ_0026827 promotes osteoblast differentiation of human dental pulp stem cells through the Beclin1 and RUNX1 signaling pathways by sponging miR-188-3p. Front Cell Dev Biol. 8:4702020. View Article : Google Scholar : PubMed/NCBI | |
Shen G, Ren H, Shang Q, Zhang Z, Zhao W, Yu X, Tang J, Yang Z, Liang D and Jiang X: miR-128 plays a critical role in murine osteoclastogenesis and estrogen deficiency-induced bone loss. Theranostics. 10:4334–4348. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhu J, Wang H and Liu H: Osteoclastic miR-301-b knockout reduces ovariectomy (OVX)-induced bone loss by regulating CYDR/NF-κB signaling pathway. Biochem Biophys Res Commun. 529:35–42. 2020. View Article : Google Scholar : PubMed/NCBI | |
Huang Y, Ren K, Yao T, Zhu H, Xu Y, Ye H, Chen Z, Lv J, Shen S and Ma J: MicroRNA-25-3p regulates osteoclasts through nuclear factor I X. Biochem Biophys Res Commun. 522:74–80. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Chen XF, Li J, He F, Li X and Guo Y: lncRNA Neat1 stimulates osteoclastogenesis via sponging miR-7. J Bone Miner Res. 35:1772–1781. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chang Y, Yu D, Chu W, Liu Z, Li H and Zhai Z: lncRNA expression profiles and the negative regulation of lncRNA-NOMMUT037835.2 in osteoclastogenesis. Bone. 130:1150722020. View Article : Google Scholar : PubMed/NCBI | |
Zhao W, Dong Y, Wu C, Ma Y, Jin Y and Ji Y: miR-21 overexpression improves osteoporosis by targeting RECK. Mol Cell Biochem. 405:125–133. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cong C, Tian J, Gao T, Zhou C, Wang Y, Cui X and Zhu L: lncRNA GAS5 is upregulated in osteoporosis and downregulates miR-21 to promote apoptosis of osteoclasts. Clin Interv Aging. 15:1163–1169. 2020. View Article : Google Scholar : PubMed/NCBI |